moby--moby/libnetwork/ipam/allocator_test.go

576 lines
16 KiB
Go
Raw Normal View History

package ipam
import (
"fmt"
"net"
"testing"
"time"
"github.com/docker/libnetwork/bitseq"
)
func getAllocator(subnet *net.IPNet) *Allocator {
a := NewAllocator(nil)
a.AddSubnet("default", &SubnetInfo{Subnet: subnet})
return a
}
func TestInt2IP2IntConversion(t *testing.T) {
for i := 0; i < 256*256*256; i++ {
var array [4]byte // new array at each cycle
addIntToIP(array[:], i)
j := ipToInt(array[:])
if j != i {
t.Fatalf("Failed to convert ordinal %d to IP % x and back to ordinal. Got %d", i, array, j)
}
}
}
func TestIsValid(t *testing.T) {
list := []int{0, 255, 256, 511, 512, 767, 768}
for _, i := range list {
if isValidIP(i) {
t.Fatalf("Failed to detect invalid IPv4 ordinal: %d", i)
}
}
list = []int{1, 254, 257, 258, 510, 513, 769, 770}
for _, i := range list {
if !isValidIP(i) {
t.Fatalf("Marked valid ipv4 as invalid: %d", i)
}
}
}
func TestGetAddressVersion(t *testing.T) {
if v4 != getAddressVersion(net.ParseIP("172.28.30.112")) {
t.Fatalf("Failed to detect IPv4 version")
}
if v4 != getAddressVersion(net.ParseIP("0.0.0.1")) {
t.Fatalf("Failed to detect IPv4 version")
}
if v6 != getAddressVersion(net.ParseIP("ff01::1")) {
t.Fatalf("Failed to detect IPv6 version")
}
if v6 != getAddressVersion(net.ParseIP("2001:56::76:51")) {
t.Fatalf("Failed to detect IPv6 version")
}
}
func TestKeyString(t *testing.T) {
k := &subnetKey{addressSpace: "default", subnet: "172.27.0.0/16"}
expected := "default/172.27.0.0/16"
if expected != k.String() {
t.Fatalf("Unexpected key string: %s", k.String())
}
k2 := &subnetKey{}
err := k2.FromString(expected)
if err != nil {
t.Fatal(err)
}
if k2.addressSpace != k.addressSpace || k2.subnet != k.subnet {
t.Fatalf("subnetKey.FromString() failed. Expected %v. Got %v", k, k2)
}
expected = fmt.Sprintf("%s/%s", expected, "172.27.3.0/24")
k.childSubnet = "172.27.3.0/24"
if expected != k.String() {
t.Fatalf("Unexpected key string: %s", k.String())
}
err = k2.FromString(expected)
if err != nil {
t.Fatal(err)
}
if k2.addressSpace != k.addressSpace || k2.subnet != k.subnet {
t.Fatalf("subnetKey.FromString() failed. Expected %v. Got %v", k, k2)
}
}
func TestAddSubnets(t *testing.T) {
a := NewAllocator(nil)
_, sub0, _ := net.ParseCIDR("10.0.0.0/8")
err := a.AddSubnet("default", &SubnetInfo{Subnet: sub0})
if err != nil {
t.Fatalf("Unexpected failure in adding subent")
}
err = a.AddSubnet("abc", &SubnetInfo{Subnet: sub0})
if err != nil {
t.Fatalf("Unexpected failure in adding overlapping subents to different address spaces")
}
err = a.AddSubnet("abc", &SubnetInfo{Subnet: sub0})
if err == nil {
t.Fatalf("Failed to detect overlapping subnets: %s and %s", sub0, sub0)
}
_, sub1, _ := net.ParseCIDR("10.20.2.0/24")
err = a.AddSubnet("default", &SubnetInfo{Subnet: sub1})
if err == nil {
t.Fatalf("Failed to detect overlapping subnets: %s and %s", sub0, sub1)
}
_, sub2, _ := net.ParseCIDR("10.128.0.0/9")
err = a.AddSubnet("default", &SubnetInfo{Subnet: sub2})
if err == nil {
t.Fatalf("Failed to detect overlapping subnets: %s and %s", sub1, sub2)
}
_, sub6, err := net.ParseCIDR("1003:1:2:3:4:5:6::/112")
if err != nil {
t.Fatalf("Wrong input, Can't proceed: %s", err.Error())
}
err = a.AddSubnet("default", &SubnetInfo{Subnet: sub6})
if err != nil {
t.Fatalf("Failed to add v6 subnet: %s", err.Error())
}
_, sub6, err = net.ParseCIDR("1003:1:2:3::/64")
if err != nil {
t.Fatalf("Wrong input, Can't proceed: %s", err.Error())
}
err = a.AddSubnet("default", &SubnetInfo{Subnet: sub6})
if err == nil {
t.Fatalf("Failed to detect overlapping v6 subnet")
}
}
func TestAdjustAndCheckSubnet(t *testing.T) {
_, sub6, _ := net.ParseCIDR("1003:1:2:300::/63")
_, err := adjustAndCheckSubnetSize(sub6)
if err == nil {
t.Fatalf("Failed detect too big v6 subnet")
}
_, sub, _ := net.ParseCIDR("192.0.0.0/7")
_, err = adjustAndCheckSubnetSize(sub)
if err == nil {
t.Fatalf("Failed detect too big v4 subnet")
}
subnet := "1004:1:2:6::/64"
_, sub6, _ = net.ParseCIDR(subnet)
subnetToSplit, err := adjustAndCheckSubnetSize(sub6)
if err != nil {
t.Fatalf("Unexpected error returned by adjustAndCheckSubnetSize()")
}
ones, _ := subnetToSplit.Mask.Size()
if ones < minNetSizeV6Eff {
t.Fatalf("Wrong effective network size for %s. Expected: %d. Got: %d", subnet, minNetSizeV6Eff, ones)
}
}
func TestRemoveSubnet(t *testing.T) {
a := NewAllocator(nil)
input := []struct {
addrSpace AddressSpace
subnet string
}{
{"default", "192.168.0.0/16"},
{"default", "172.17.0.0/16"},
{"default", "10.0.0.0/8"},
{"default", "2002:1:2:3:4:5:ffff::/112"},
{"splane", "172.17.0.0/16"},
{"splane", "10.0.0.0/8"},
{"splane", "2002:1:2:3:4:5:6::/112"},
{"splane", "2002:1:2:3:4:5:ffff::/112"},
}
for _, i := range input {
_, sub, err := net.ParseCIDR(i.subnet)
if err != nil {
t.Fatalf("Wrong input, Can't proceed: %s", err.Error())
}
err = a.AddSubnet(i.addrSpace, &SubnetInfo{Subnet: sub})
if err != nil {
t.Fatalf("Failed to apply input. Can't proceed: %s", err.Error())
}
}
_, sub, _ := net.ParseCIDR("172.17.0.0/16")
a.RemoveSubnet("default", sub)
if len(a.subnets) != 7 {
t.Fatalf("Failed to remove subnet info")
}
list := a.getSubnetList("default", v4)
if len(list) != 257 {
t.Fatalf("Failed to effectively remove subnet address space")
}
_, sub, _ = net.ParseCIDR("2002:1:2:3:4:5:ffff::/112")
a.RemoveSubnet("default", sub)
if len(a.subnets) != 6 {
t.Fatalf("Failed to remove subnet info")
}
list = a.getSubnetList("default", v6)
if len(list) != 0 {
t.Fatalf("Failed to effectively remove subnet address space")
}
_, sub, _ = net.ParseCIDR("2002:1:2:3:4:5:6::/112")
a.RemoveSubnet("splane", sub)
if len(a.subnets) != 5 {
t.Fatalf("Failed to remove subnet info")
}
list = a.getSubnetList("splane", v6)
if len(list) != 1 {
t.Fatalf("Failed to effectively remove subnet address space")
}
}
func TestGetInternalSubnets(t *testing.T) {
// This function tests the splitting of a parent subnet in small host subnets.
// The splitting is controlled by the max host size, which is the first parameter
// passed to the function. It basically says if the parent subnet host size is
// greater than the max host size, split the parent subnet into N internal small
// subnets with host size = max host size to cover the same address space.
input := []struct {
internalHostSize int
parentSubnet string
firstIntSubnet string
lastIntSubnet string
}{
// Test 8 bits prefix network
{24, "10.0.0.0/8", "10.0.0.0/8", "10.0.0.0/8"},
{16, "10.0.0.0/8", "10.0.0.0/16", "10.255.0.0/16"},
{8, "10.0.0.0/8", "10.0.0.0/24", "10.255.255.0/24"},
// Test 16 bits prefix network
{16, "192.168.0.0/16", "192.168.0.0/16", "192.168.0.0/16"},
{8, "192.168.0.0/16", "192.168.0.0/24", "192.168.255.0/24"},
// Test 24 bits prefix network
{16, "192.168.57.0/24", "192.168.57.0/24", "192.168.57.0/24"},
{8, "192.168.57.0/24", "192.168.57.0/24", "192.168.57.0/24"},
// Test non byte multiple host size
{24, "10.0.0.0/8", "10.0.0.0/8", "10.0.0.0/8"},
{20, "10.0.0.0/12", "10.0.0.0/12", "10.0.0.0/12"},
{20, "10.128.0.0/12", "10.128.0.0/12", "10.128.0.0/12"},
{12, "10.16.0.0/16", "10.16.0.0/20", "10.16.240.0/20"},
{13, "10.0.0.0/8", "10.0.0.0/19", "10.255.224.0/19"},
{15, "10.0.0.0/8", "10.0.0.0/17", "10.255.128.0/17"},
// Test v6 network
{16, "2002:1:2:3:4:5:6000::/110", "2002:1:2:3:4:5:6000:0/112", "2002:1:2:3:4:5:6003:0/112"},
{16, "2002:1:2:3:4:5:ff00::/104", "2002:1:2:3:4:5:ff00:0/112", "2002:1:2:3:4:5:ffff:0/112"},
{12, "2002:1:2:3:4:5:ffff::/112", "2002:1:2:3:4:5:ffff:0/116", "2002:1:2:3:4:5:ffff:f000/116"},
{11, "2002:1:2:3:4:5:ffff::/112", "2002:1:2:3:4:5:ffff:0/117", "2002:1:2:3:4:5:ffff:f800/117"},
}
for _, d := range input {
assertInternalSubnet(t, d.internalHostSize, d.parentSubnet, d.firstIntSubnet, d.lastIntSubnet)
}
}
func TestGetAddress(t *testing.T) {
input := []string{
/*"10.0.0.0/8", "10.0.0.0/9", */ "10.0.0.0/10", "10.0.0.0/11", "10.0.0.0/12", "10.0.0.0/13", "10.0.0.0/14",
"10.0.0.0/15", "10.0.0.0/16", "10.0.0.0/17", "10.0.0.0/18", "10.0.0.0/19", "10.0.0.0/20", "10.0.0.0/21",
"10.0.0.0/22", "10.0.0.0/23", "10.0.0.0/24", "10.0.0.0/25", "10.0.0.0/26", "10.0.0.0/27", "10.0.0.0/28",
"10.0.0.0/29", "10.0.0.0/30", "10.0.0.0/31"}
for _, subnet := range input {
assertGetAddress(t, subnet)
}
}
func TestGetSubnetList(t *testing.T) {
a := NewAllocator(nil)
input := []struct {
addrSpace AddressSpace
subnet string
}{
{"default", "192.168.0.0/16"},
{"default", "172.17.0.0/16"},
{"default", "10.0.0.0/8"},
{"default", "2002:1:2:3:4:5:6::/112"},
{"default", "2002:1:2:3:4:5:ffff::/112"},
{"splane", "172.17.0.0/16"},
{"splane", "10.0.0.0/8"},
{"splane", "2002:1:2:3:4:5:ff00::/104"},
}
for _, i := range input {
_, sub, err := net.ParseCIDR(i.subnet)
if err != nil {
t.Fatalf("Wrong input, Can't proceed: %s", err.Error())
}
err = a.AddSubnet(i.addrSpace, &SubnetInfo{Subnet: sub})
if err != nil {
t.Fatalf("Failed to apply input. Can't proceed: %s", err.Error())
}
}
list := a.getSubnetList("default", v4)
if len(list) != 258 {
t.Fatalf("Incorrect number of internal subnets for ipv4 version. Expected 258. Got %d.", len(list))
}
list = a.getSubnetList("splane", v4)
if len(list) != 257 {
t.Fatalf("Incorrect number of internal subnets for ipv4 version. Expected 257. Got %d.", len(list))
}
list = a.getSubnetList("default", v6)
if len(list) != 2 {
t.Fatalf("Incorrect number of internal subnets for ipv6 version. Expected 2. Got %d.", len(list))
}
list = a.getSubnetList("splane", v6)
if len(list) != 256 {
t.Fatalf("Incorrect number of internal subnets for ipv6 version. Expected 256. Got %d.", len(list))
}
}
func TestRequestSyntaxCheck(t *testing.T) {
var (
a = NewAllocator(nil)
subnet = "192.168.0.0/16"
addSpace = AddressSpace("green")
)
// Add subnet and create base request
_, sub, _ := net.ParseCIDR(subnet)
a.AddSubnet(addSpace, &SubnetInfo{Subnet: sub})
req := &AddressRequest{Subnet: *sub}
// Empty address space request
_, err := a.Request("", req)
if err == nil {
t.Fatalf("Failed to detect wrong request: empty address space")
}
// Preferred address from different subnet in request
req.Address = net.ParseIP("172.17.0.23")
_, err = a.Request(addSpace, req)
if err == nil {
t.Fatalf("Failed to detect wrong request: preferred IP from different subnet")
}
// Preferred address specified and nil subnet
req = &AddressRequest{Address: net.ParseIP("172.17.0.23")}
_, err = a.Request(addSpace, req)
if err == nil {
t.Fatalf("Failed to detect wrong request: subnet not specified but preferred address specified")
}
}
func TestRequest(t *testing.T) {
// Request N addresses from different size subnets, verifying last request
// returns expected address. Internal subnet host size is Allocator's default, 16
input := []struct {
subnet string
numReq int
lastIP string
}{
{"192.168.59.0/24", 254, "192.168.59.254"},
{"192.168.240.0/20", 254, "192.168.240.254"},
{"192.168.0.0/16", 254, "192.168.0.254"},
{"10.16.0.0/16", 254, "10.16.0.254"},
{"10.128.0.0/12", 254, "10.128.0.254"},
{"10.0.0.0/8", 254, "10.0.0.254"},
{"192.168.0.0/16", 256, "192.168.1.2"},
{"10.0.0.0/8", 256, "10.0.1.2"},
{"192.168.128.0/18", 4 * 254, "192.168.131.254"},
{"192.168.240.0/20", 16 * 254, "192.168.255.254"},
{"192.168.0.0/16", 256 * 254, "192.168.255.254"},
{"10.0.0.0/8", 2 * 254, "10.0.1.254"},
{"10.0.0.0/8", 5 * 254, "10.0.4.254"},
//{"10.0.0.0/8", 100 * 256 * 254, "10.99.255.254"},
}
for _, d := range input {
assertNRequests(t, d.subnet, d.numReq, d.lastIP)
}
}
func TestRelease(t *testing.T) {
var (
err error
req *AddressRequest
subnet = "192.168.0.0/16"
)
_, sub, _ := net.ParseCIDR(subnet)
a := getAllocator(sub)
req = &AddressRequest{Subnet: *sub}
bm := a.addresses[subnetKey{"default", subnet, subnet}]
// Allocate all addresses
for err != ErrNoAvailableIPs {
_, err = a.Request("default", req)
}
toRelease := []struct {
address string
}{
{"192.168.0.1"},
{"192.168.0.2"},
{"192.168.0.3"},
{"192.168.0.4"},
{"192.168.0.5"},
{"192.168.0.6"},
{"192.168.0.7"},
{"192.168.0.8"},
{"192.168.0.9"},
{"192.168.0.10"},
{"192.168.0.30"},
{"192.168.0.31"},
{"192.168.1.32"},
{"192.168.0.254"},
{"192.168.1.1"},
{"192.168.1.2"},
{"192.168.1.3"},
{"192.168.255.253"},
{"192.168.255.254"},
}
// One by one, relase the address and request again. We should get the same IP
req = &AddressRequest{Subnet: *sub}
for i, inp := range toRelease {
address := net.ParseIP(inp.address)
a.Release("default", address)
if bm.freeAddresses != 1 {
t.Fatalf("Failed to update free address count after release. Expected %d, Found: %d", i+1, bm.freeAddresses)
}
rsp, err := a.Request("default", req)
if err != nil {
t.Fatalf("Failed to obtain the address: %s", err.Error())
}
if !address.Equal(rsp.Address) {
t.Fatalf("Failed to obtain the same address. Expected: %s, Got: %s", address, rsp.Address)
}
}
}
func assertInternalSubnet(t *testing.T, hostSize int, bigSubnet, firstSmall, lastSmall string) {
_, subnet, _ := net.ParseCIDR(bigSubnet)
list, _ := getInternalSubnets(subnet, hostSize)
count := 1
ones, bits := subnet.Mask.Size()
diff := bits - ones - hostSize
if diff > 0 {
count <<= uint(diff)
}
if len(list) != count {
t.Fatalf("Wrong small subnets number. Expected: %d, Got: %d", count, len(list))
}
if firstSmall != list[0].String() {
t.Fatalf("Wrong first small subent. Expected: %v, Got: %v", firstSmall, list[0])
}
if lastSmall != list[count-1].String() {
t.Fatalf("Wrong last small subent. Expected: %v, Got: %v", lastSmall, list[count-1])
}
}
func assertGetAddress(t *testing.T, subnet string) {
var (
err error
printTime = false
a = &Allocator{}
)
_, sub, _ := net.ParseCIDR(subnet)
ones, bits := sub.Mask.Size()
zeroes := bits - ones
numAddresses := 1 << uint(zeroes)
var expectedMax uint32
if numAddresses >= 32 {
expectedMax = uint32(1<<32 - 1)
} else {
expectedMax = (1<<uint(numAddresses) - 1) << uint(32-numAddresses)
}
bm := &bitmask{
subnet: sub,
addressMask: bitseq.NewHandle("ipam_test", nil, "default/192.168.0.0/24", uint32(numAddresses)),
freeAddresses: numAddresses,
}
numBlocks := bm.addressMask.Head.Count
start := time.Now()
run := 0
for err != ErrNoAvailableIPs {
_, err = a.getAddress(bm, nil, v4)
run++
}
if printTime {
fmt.Printf("\nTaken %v, to allocate all addresses on %s. (nemAddresses: %d. Runs: %d)", time.Since(start), subnet, numAddresses, run)
}
if bm.addressMask.Head.Block != expectedMax || bm.addressMask.Head.Count != numBlocks {
t.Fatalf("Failed to effectively reserve all addresses on %s. Expected (0x%x, %d) as first sequence. Found (0x%x,%d)",
subnet, expectedMax, numBlocks, bm.addressMask.Head.Block, bm.addressMask.Head.Count)
}
}
func assertNRequests(t *testing.T, subnet string, numReq int, lastExpectedIP string) {
var (
err error
req *AddressRequest
rsp *AddressResponse
printTime = false
)
_, sub, _ := net.ParseCIDR(subnet)
lastIP := net.ParseIP(lastExpectedIP)
a := getAllocator(sub)
req = &AddressRequest{Subnet: *sub}
i := 0
start := time.Now()
for ; i < numReq; i++ {
rsp, err = a.Request("default", req)
}
if printTime {
fmt.Printf("\nTaken %v, to allocate %d addresses on %s\n", time.Since(start), numReq, subnet)
}
if !lastIP.Equal(rsp.Address) {
t.Fatalf("Wrong last IP. Expected %s. Got: %s (err: %v, ind: %d)", lastExpectedIP, rsp.Address.String(), err, i)
}
}
func benchmarkRequest(subnet *net.IPNet) {
var err error
a := NewAllocator(nil)
a.internalHostSize = 20
a.AddSubnet("default", &SubnetInfo{Subnet: subnet})
req := &AddressRequest{Subnet: *subnet}
for err != ErrNoAvailableIPs {
_, err = a.Request("default", req)
}
}
func benchMarkRequest(subnet *net.IPNet, b *testing.B) {
for n := 0; n < b.N; n++ {
benchmarkRequest(subnet)
}
}
func BenchmarkRequest_24(b *testing.B) {
benchmarkRequest(&net.IPNet{IP: []byte{10, 0, 0, 0}, Mask: []byte{255, 255, 255, 0}})
}
func BenchmarkRequest_16(b *testing.B) {
benchmarkRequest(&net.IPNet{IP: []byte{10, 0, 0, 0}, Mask: []byte{255, 255, 0, 0}})
}
func BenchmarkRequest_8(b *testing.B) {
benchmarkRequest(&net.IPNet{IP: []byte{10, 0, 0, 0}, Mask: []byte{255, 0xfc, 0, 0}})
}