Fix markdown syntax for "docker run" instruction example
104 KiB
page_title: Command Line Interface page_description: Docker's CLI command description and usage page_keywords: Docker, Docker documentation, CLI, command line
Docker Command Line
{{ include "no-remote-sudo.md" }}
To list available commands, either run docker
with no parameters
or execute docker help
:
$ docker
Usage: docker [OPTIONS] COMMAND [arg...]
-H, --host=[]: The socket(s) to bind to in daemon mode, specified using one or more tcp://host:port, unix:///path/to/socket, fd://* or fd://socketfd.
A self-sufficient runtime for Linux containers.
...
Depending on your Docker system configuration, you may be required
to preface each docker
command with sudo
. To avoid having to use sudo
with
the docker
command, your system administrator can create a Unix group called
docker
and add users to it.
For more information about installing Docker or sudo
configuration, refer to
the installation instructions for your operating system.
Environment variables
For easy reference, the following list of environment variables are supported
by the docker
command line:
DOCKER_CERT_PATH
The location of your authentication keys.DOCKER_DRIVER
The graph driver to use.DOCKER_HOST
Daemon socket to connect to.DOCKER_NOWARN_KERNEL_VERSION
Prevent warnings that your Linux kernel is unsuitable for Docker.DOCKER_RAMDISK
If set this will disable 'pivot_root'.DOCKER_TLS_VERIFY
When set Docker uses TLS and verifies the remote.DOCKER_TMPDIR
Location for temporary Docker files.
Because Docker is developed using 'Go', you can also use any environment variables used by the 'Go' runtime. In particular, you may find these useful:
HTTP_PROXY
HTTPS_PROXY
NO_PROXY
These Go environment variables are case-insensitive. See the Go specification for details on these variables.
Configuration files
The Docker command line stores its configuration files in a directory called
.docker
within your HOME
directory. Docker manages most of the files in
.docker
and you should not modify them. However, you can modify the
.docker/config.json
file to control certain aspects of how the docker
command behaves.
Currently, you can modify the docker
command behavior using environment
variables or command-line options. You can also use options within
config.json
to modify some of the same behavior. When using these
mechanisms, you must keep in mind the order of precedence among them. Command
line options override environment variables and environment variables override
properties you specify in a config.json
file.
The config.json
file stores a JSON encoding of a single HttpHeaders
property. The property specifies a set of headers to include in all
messages sent from the Docker client to the daemon. Docker does not try to
interpret or understand these header; it simply puts them into the messages.
Docker does not allow these headers to change any headers it sets for itself.
Following is a sample config.json
file:
{
"HttpHeaders: {
"MyHeader": "MyValue"
}
}
Help
To list the help on any command just execute the command, followed by the --help
option.
$ docker run --help
Usage: docker run [OPTIONS] IMAGE [COMMAND] [ARG...]
Run a command in a new container
-a, --attach=[] Attach to STDIN, STDOUT or STDERR
-c, --cpu-shares=0 CPU shares (relative weight)
...
Option types
Single character command line options can be combined, so rather than
typing docker run -i -t --name test busybox sh
,
you can write docker run -it --name test busybox sh
.
Boolean
Boolean options take the form -d=false
. The value you see in the help text is the
default value which is set if you do not specify that flag. If you specify
a Boolean flag without a value, this will set the flag to true
, irrespective
of the default value.
For example, running docker run -d
will set the value to true
, so
your container will run in "detached" mode, in the background.
Options which default to true
(e.g., docker build --rm=true
) can only
be set to the non-default value by explicitly setting them to false
:
$ docker build --rm=false .
Multi
You can specify options like -a=[]
multiple times in a single command line,
for example in these commands:
$ docker run -a stdin -a stdout -i -t ubuntu /bin/bash
$ docker run -a stdin -a stdout -a stderr ubuntu /bin/ls
Sometimes, multiple options can call for a more complex value string as for -v
:
$ docker run -v /host:/container example/mysql
Note
: Do not use the
-t
and-a stderr
options together due to limitations in thepty
implementation. Allstderr
inpty
mode simply goes tostdout
.
Strings and Integers
Options like --name=""
expect a string, and they
can only be specified once. Options like -c=0
expect an integer, and they can only be specified once.
daemon
Usage: docker [OPTIONS] COMMAND [arg...]
A self-sufficient runtime for linux containers.
Options:
--api-cors-header="" Set CORS headers in the remote API
-b, --bridge="" Attach containers to a network bridge
--bip="" Specify network bridge IP
-D, --debug=false Enable debug mode
-d, --daemon=false Enable daemon mode
--default-gateway="" Container default gateway IPv4 address
--default-gateway-v6="" Container default gateway IPv6 address
--dns=[] DNS server to use
--dns-search=[] DNS search domains to use
--default-ulimit=[] Set default ulimit settings for containers
-e, --exec-driver="native" Exec driver to use
--exec-opt=[] Set exec driver options
--exec-root="/var/run/docker" Root of the Docker execdriver
--fixed-cidr="" IPv4 subnet for fixed IPs
--fixed-cidr-v6="" IPv6 subnet for fixed IPs
-G, --group="docker" Group for the unix socket
-g, --graph="/var/lib/docker" Root of the Docker runtime
-H, --host=[] Daemon socket(s) to connect to
-h, --help=false Print usage
--icc=true Enable inter-container communication
--insecure-registry=[] Enable insecure registry communication
--ip=0.0.0.0 Default IP when binding container ports
--ip-forward=true Enable net.ipv4.ip_forward
--ip-masq=true Enable IP masquerading
--iptables=true Enable addition of iptables rules
--ipv6=false Enable IPv6 networking
-l, --log-level="info" Set the logging level
--label=[] Set key=value labels to the daemon
--log-driver="json-file" Default driver for container logs
--mtu=0 Set the containers network MTU
-p, --pidfile="/var/run/docker.pid" Path to use for daemon PID file
--registry-mirror=[] Preferred Docker registry mirror
-s, --storage-driver="" Storage driver to use
--selinux-enabled=false Enable selinux support
--storage-opt=[] Set storage driver options
--tls=false Use TLS; implied by --tlsverify
--tlscacert="~/.docker/ca.pem" Trust certs signed only by this CA
--tlscert="~/.docker/cert.pem" Path to TLS certificate file
--tlskey="~/.docker/key.pem" Path to TLS key file
--tlsverify=false Use TLS and verify the remote
--userland-proxy=true Use userland proxy for loopback traffic
-v, --version=false Print version information and quit
Options with [] may be specified multiple times.
The Docker daemon is the persistent process that manages containers.
Docker uses the same binary for both the daemon and client. To run the
daemon you provide the -d
flag.
To run the daemon with debug output, use docker -d -D
.
Daemon socket option
The Docker daemon can listen for Docker Remote API
requests via three different types of Socket: unix
, tcp
, and fd
.
By default, a unix
domain socket (or IPC socket) is created at /var/run/docker.sock
,
requiring either root
permission, or docker
group membership.
If you need to access the Docker daemon remotely, you need to enable the tcp
Socket. Beware that the default setup provides un-encrypted and un-authenticated
direct access to the Docker daemon - and should be secured either using the
built in HTTPS encrypted socket, or by putting a secure web
proxy in front of it. You can listen on port 2375
on all network interfaces
with -H tcp://0.0.0.0:2375
, or on a particular network interface using its IP
address: -H tcp://192.168.59.103:2375
. It is conventional to use port 2375
for un-encrypted, and port 2376
for encrypted communication with the daemon.
Note
If you're using an HTTPS encrypted socket, keep in mind that only TLS1.0 and greater are supported. Protocols SSLv3 and under are not supported anymore for security reasons.
On Systemd based systems, you can communicate with the daemon via
Systemd socket activation, use
docker -d -H fd://
. Using fd://
will work perfectly for most setups but
you can also specify individual sockets: docker -d -H fd://3
. If the
specified socket activated files aren't found, then Docker will exit. You
can find examples of using Systemd socket activation with Docker and
Systemd in the Docker source tree.
You can configure the Docker daemon to listen to multiple sockets at the same
time using multiple -H
options:
# listen using the default unix socket, and on 2 specific IP addresses on this host.
docker -d -H unix:///var/run/docker.sock -H tcp://192.168.59.106 -H tcp://10.10.10.2
The Docker client will honor the DOCKER_HOST
environment variable to set
the -H
flag for the client.
$ docker -H tcp://0.0.0.0:2375 ps
# or
$ export DOCKER_HOST="tcp://0.0.0.0:2375"
$ docker ps
# both are equal
Setting the DOCKER_TLS_VERIFY
environment variable to any value other than the empty
string is equivalent to setting the --tlsverify
flag. The following are equivalent:
$ docker --tlsverify ps
# or
$ export DOCKER_TLS_VERIFY=1
$ docker ps
The Docker client will honor the HTTP_PROXY
, HTTPS_PROXY
, and NO_PROXY
environment variables (or the lowercase versions thereof). HTTPS_PROXY
takes
precedence over HTTP_PROXY
.
Daemon storage-driver option
The Docker daemon has support for several different image layer storage drivers: aufs
,
devicemapper
, btrfs
, zfs
and overlay
.
The aufs
driver is the oldest, but is based on a Linux kernel patch-set that
is unlikely to be merged into the main kernel. These are also known to cause some
serious kernel crashes. However, aufs
is also the only storage driver that allows
containers to share executable and shared library memory, so is a useful choice
when running thousands of containers with the same program or libraries.
The devicemapper
driver uses thin provisioning and Copy on Write (CoW)
snapshots. For each devicemapper graph location – typically
/var/lib/docker/devicemapper
– a thin pool is created based on two block
devices, one for data and one for metadata. By default, these block devices
are created automatically by using loopback mounts of automatically created
sparse files. Refer to Storage driver options below
for a way how to customize this setup.
~jpetazzo/Resizing Docker containers with the Device Mapper plugin article
explains how to tune your existing setup without the use of options.
The btrfs
driver is very fast for docker build
- but like devicemapper
does not
share executable memory between devices. Use docker -d -s btrfs -g /mnt/btrfs_partition
.
The zfs
driver is probably not fast as btrfs
but has a longer track record
on stability. Thanks to Single Copy ARC
shared blocks between clones will be
cached only once. Use docker -d -s zfs
. To select a different zfs filesystem
set zfs.fsname
option as described in Storage driver options:
The overlay
is a very fast union filesystem. It is now merged in the main
Linux kernel as of 3.18.0.
Call docker -d -s overlay
to use it.
Note: It is currently unsupported on
btrfs
or any Copy on Write filesystem and should only be used overext4
partitions.
Storage driver options
Particular storage-driver can be configured with options specified with
--storage-opt
flags. Options for devicemapper
are prefixed with dm
and
options for zfs
start with zfs
.
Currently supported options of devicemapper
:
-
dm.basesize
Specifies the size to use when creating the base device, which limits the size of images and containers. The default value is 10G. Note, thin devices are inherently "sparse", so a 10G device which is mostly empty doesn't use 10 GB of space on the pool. However, the filesystem will use more space for the empty case the larger the device is.
Warning: This value affects the system-wide "base" empty filesystem that may already be initialized and inherited by pulled images. Typically, a change to this value will require additional steps to take effect:
$ sudo service docker stop $ sudo rm -rf /var/lib/docker $ sudo service docker start
Example use:
$ docker -d --storage-opt dm.basesize=20G
-
dm.loopdatasize
Specifies the size to use when creating the loopback file for the "data" device which is used for the thin pool. The default size is 100G. Note that the file is sparse, so it will not initially take up this much space.
Example use:
$ docker -d --storage-opt dm.loopdatasize=200G
-
dm.loopmetadatasize
Specifies the size to use when creating the loopback file for the "metadata" device which is used for the thin pool. The default size is 2G. Note that the file is sparse, so it will not initially take up this much space.
Example use:
$ docker -d --storage-opt dm.loopmetadatasize=4G
-
dm.fs
Specifies the filesystem type to use for the base device. The supported options are "ext4" and "xfs". The default is "ext4"
Example use:
$ docker -d --storage-opt dm.fs=xfs
-
dm.mkfsarg
Specifies extra mkfs arguments to be used when creating the base device.
Example use:
$ docker -d --storage-opt "dm.mkfsarg=-O ^has_journal"
-
dm.mountopt
Specifies extra mount options used when mounting the thin devices.
Example use:
$ docker -d --storage-opt dm.mountopt=nodiscard
-
dm.datadev
Specifies a custom blockdevice to use for data for the thin pool.
If using a block device for device mapper storage, ideally both datadev and metadatadev should be specified to completely avoid using the loopback device.
Example use:
$ docker -d \ --storage-opt dm.datadev=/dev/sdb1 \ --storage-opt dm.metadatadev=/dev/sdc1
-
dm.metadatadev
Specifies a custom blockdevice to use for metadata for the thin pool.
For best performance the metadata should be on a different spindle than the data, or even better on an SSD.
If setting up a new metadata pool it is required to be valid. This can be achieved by zeroing the first 4k to indicate empty metadata, like this:
$ dd if=/dev/zero of=$metadata_dev bs=4096 count=1
Example use:
$ docker -d \ --storage-opt dm.datadev=/dev/sdb1 \ --storage-opt dm.metadatadev=/dev/sdc1
-
dm.blocksize
Specifies a custom blocksize to use for the thin pool. The default blocksize is 64K.
Example use:
$ docker -d --storage-opt dm.blocksize=512K
-
dm.blkdiscard
Enables or disables the use of blkdiscard when removing devicemapper devices. This is enabled by default (only) if using loopback devices and is required to resparsify the loopback file on image/container removal.
Disabling this on loopback can lead to much faster container removal times, but will make the space used in
/var/lib/docker
directory not be returned to the system for other use when containers are removed.Example use:
$ docker -d --storage-opt dm.blkdiscard=false
-
dm.override_udev_sync_check
Overrides the
udev
synchronization checks betweendevicemapper
andudev
.udev
is the device manager for the Linux kernel.To view the
udev
sync support of a Docker daemon that is using thedevicemapper
driver, run:$ docker info
[...] Udev Sync Supported: true [...]
When
udev
sync support istrue
, thendevicemapper
and udev can coordinate the activation and deactivation of devices for containers.When
udev
sync support isfalse
, a race condition occurs between thedevicemapper
andudev
during create and cleanup. The race condition results in errors and failures. (For information on these failures, see docker#4036)To allow the
docker
daemon to start, regardless ofudev
sync not being supported, setdm.override_udev_sync_check
to true:$ docker -d --storage-opt dm.override_udev_sync_check=true
When this value is
true
, thedevicemapper
continues and simply warns you the errors are happening.Note
: The ideal is to pursue a
docker
daemon and environment that does support synchronizing withudev
. For further discussion on this topic, see docker#4036. Otherwise, set this flag for migrating existing Docker daemons to a daemon with a supported environment.
Docker execdriver option
Currently supported options of zfs
:
-
zfs.fsname
Set zfs filesystem under which docker will create its own datasets. By default docker will pick up the zfs filesystem where docker graph (
/var/lib/docker
) is located.Example use:
$ docker -d -s zfs --storage-opt zfs.fsname=zroot/docker
The Docker daemon uses a specifically built libcontainer
execution driver as its
interface to the Linux kernel namespaces
, cgroups
, and SELinux
.
There is still legacy support for the original LXC userspace tools via the lxc
execution driver, however, this is
not where the primary development of new functionality is taking place.
Add -e lxc
to the daemon flags to use the lxc
execution driver.
Options for the native execdriver
You can configure the native
(libcontainer) execdriver using options specified
with the --exec-opt
flag. All the flag's options have the native
prefix. A
single native.cgroupdriver
option is available.
The native.cgroupdriver
option specifies the management of the container's
cgroups. You can specify cgroupfs
or systemd
. If you specify systemd
and
it is not available, the system uses cgroupfs
. By default, if no option is
specified, the execdriver first tries systemd
and falls back to cgroupfs
.
This example sets the execdriver to cgroupfs
:
$ sudo docker -d --exec-opt native.cgroupdriver=cgroupfs
Setting this option applies to all containers the daemon launches.
Daemon DNS options
To set the DNS server for all Docker containers, use
docker -d --dns 8.8.8.8
.
To set the DNS search domain for all Docker containers, use
docker -d --dns-search example.com
.
Insecure registries
Docker considers a private registry either secure or insecure.
In the rest of this section, registry is used for private registry, and myregistry:5000
is a placeholder example for a private registry.
A secure registry uses TLS and a copy of its CA certificate is placed on the Docker host at
/etc/docker/certs.d/myregistry:5000/ca.crt
.
An insecure registry is either not using TLS (i.e., listening on plain text HTTP), or is using
TLS with a CA certificate not known by the Docker daemon. The latter can happen when the
certificate was not found under /etc/docker/certs.d/myregistry:5000/
, or if the certificate
verification failed (i.e., wrong CA).
By default, Docker assumes all, but local (see local registries below), registries are secure.
Communicating with an insecure registry is not possible if Docker assumes that registry is secure.
In order to communicate with an insecure registry, the Docker daemon requires --insecure-registry
in one of the following two forms:
--insecure-registry myregistry:5000
tells the Docker daemon that myregistry:5000 should be considered insecure.--insecure-registry 10.1.0.0/16
tells the Docker daemon that all registries whose domain resolve to an IP address is part of the subnet described by the CIDR syntax, should be considered insecure.
The flag can be used multiple times to allow multiple registries to be marked as insecure.
If an insecure registry is not marked as insecure, docker pull
, docker push
, and docker search
will result in an error message prompting the user to either secure or pass the --insecure-registry
flag to the Docker daemon as described above.
Local registries, whose IP address falls in the 127.0.0.0/8 range, are automatically marked as insecure as of Docker 1.3.2. It is not recommended to rely on this, as it may change in the future.
Running a Docker daemon behind a HTTPS_PROXY
When running inside a LAN that uses a HTTPS
proxy, the Docker Hub certificates
will be replaced by the proxy's certificates. These certificates need to be added
to your Docker host's configuration:
- Install the
ca-certificates
package for your distribution - Ask your network admin for the proxy's CA certificate and append them to
/etc/pki/tls/certs/ca-bundle.crt
- Then start your Docker daemon with
HTTPS_PROXY=http://username:password@proxy:port/ docker -d
. Theusername:
andpassword@
are optional - and are only needed if your proxy is set up to require authentication.
This will only add the proxy and authentication to the Docker daemon's requests -
your docker build
s and running containers will need extra configuration to use
the proxy
Default Ulimits
--default-ulimit
allows you to set the default ulimit
options to use for all
containers. It takes the same options as --ulimit
for docker run
. If these
defaults are not set, ulimit
settings will be inherited, if not set on
docker run
, from the Docker daemon. Any --ulimit
options passed to
docker run
will overwrite these defaults.
Miscellaneous options
IP masquerading uses address translation to allow containers without a public IP to talk to other machines on the Internet. This may interfere with some network topologies and can be disabled with --ip-masq=false.
Docker supports softlinks for the Docker data directory
(/var/lib/docker
) and for /var/lib/docker/tmp
. The DOCKER_TMPDIR
and the data directory can be set like this:
DOCKER_TMPDIR=/mnt/disk2/tmp /usr/local/bin/docker -d -D -g /var/lib/docker -H unix:// > /var/lib/boot2docker/docker.log 2>&1
# or
export DOCKER_TMPDIR=/mnt/disk2/tmp
/usr/local/bin/docker -d -D -g /var/lib/docker -H unix:// > /var/lib/boot2docker/docker.log 2>&1
attach
Usage: docker attach [OPTIONS] CONTAINER
Attach to a running container
--no-stdin=false Do not attach STDIN
--sig-proxy=true Proxy all received signals to the process
The docker attach
command allows you to attach to a running container using
the container's ID or name, either to view its ongoing output or to control it
interactively. You can attach to the same contained process multiple times
simultaneously, screen sharing style, or quickly view the progress of your
daemonized process.
You can detach from the container and leave it running with CTRL-p CTRL-q
(for a quiet exit) or with CTRL-c
if --sig-proxy
is false.
If --sig-proxy
is true (the default),CTRL-c
sends a SIGINT
to the container.
Note
: A process running as PID 1 inside a container is treated specially by Linux: it ignores any signal with the default action. So, the process will not terminate on
SIGINT
orSIGTERM
unless it is coded to do so.
It is forbidden to redirect the standard input of a docker attach
command while
attaching to a tty-enabled container (i.e.: launched with -t
).
Examples
$ docker run -d --name topdemo ubuntu /usr/bin/top -b
$ docker attach topdemo
top - 02:05:52 up 3:05, 0 users, load average: 0.01, 0.02, 0.05
Tasks: 1 total, 1 running, 0 sleeping, 0 stopped, 0 zombie
Cpu(s): 0.1%us, 0.2%sy, 0.0%ni, 99.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 373572k total, 355560k used, 18012k free, 27872k buffers
Swap: 786428k total, 0k used, 786428k free, 221740k cached
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
1 root 20 0 17200 1116 912 R 0 0.3 0:00.03 top
top - 02:05:55 up 3:05, 0 users, load average: 0.01, 0.02, 0.05
Tasks: 1 total, 1 running, 0 sleeping, 0 stopped, 0 zombie
Cpu(s): 0.0%us, 0.2%sy, 0.0%ni, 99.8%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 373572k total, 355244k used, 18328k free, 27872k buffers
Swap: 786428k total, 0k used, 786428k free, 221776k cached
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
1 root 20 0 17208 1144 932 R 0 0.3 0:00.03 top
top - 02:05:58 up 3:06, 0 users, load average: 0.01, 0.02, 0.05
Tasks: 1 total, 1 running, 0 sleeping, 0 stopped, 0 zombie
Cpu(s): 0.2%us, 0.3%sy, 0.0%ni, 99.5%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 373572k total, 355780k used, 17792k free, 27880k buffers
Swap: 786428k total, 0k used, 786428k free, 221776k cached
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
1 root 20 0 17208 1144 932 R 0 0.3 0:00.03 top
^C$
$ echo $?
0
$ docker ps -a | grep topdemo
7998ac8581f9 ubuntu:14.04 "/usr/bin/top -b" 38 seconds ago Exited (0) 21 seconds ago topdemo
And in this second example, you can see the exit code returned by the bash
process
is returned by the docker attach
command to its caller too:
$ docker run --name test -d -it debian
275c44472aebd77c926d4527885bb09f2f6db21d878c75f0a1c212c03d3bcfab
$ docker attach test
$$ exit 13
exit
$ echo $?
13
$ docker ps -a | grep test
275c44472aeb debian:7 "/bin/bash" 26 seconds ago Exited (13) 17 seconds ago test
build
Usage: docker build [OPTIONS] PATH | URL | -
Build a new image from the source code at PATH
-f, --file="" Name of the Dockerfile (Default is 'PATH/Dockerfile')
--force-rm=false Always remove intermediate containers
--no-cache=false Do not use cache when building the image
--pull=false Always attempt to pull a newer version of the image
-q, --quiet=false Suppress the verbose output generated by the containers
--rm=true Remove intermediate containers after a successful build
-t, --tag="" Repository name (and optionally a tag) for the image
-m, --memory="" Memory limit for all build containers
--memory-swap="" Total memory (memory + swap), `-1` to disable swap
-c, --cpu-shares CPU Shares (relative weight)
--cpuset-mems="" MEMs in which to allow execution, e.g. `0-3`, `0,1`
--cpuset-cpus="" CPUs in which to allow exection, e.g. `0-3`, `0,1`
--cgroup-parent="" Optional parent cgroup for the container
Builds Docker images from a Dockerfile and a "context". A build's context is
the files located in the specified PATH
or URL
. The build process can
refer to any of the files in the context. For example, your build can use
an ADD instruction to reference a file in the
context.
The URL
parameter can specify the location of a Git repository;
the repository acts as the build context. The system recursively clones the repository
and its submodules using a git clone --depth 1 --recursive
command.
This command runs in a temporary directory on your local host.
After the command succeeds, the directory is sent to the Docker daemon as the context.
Local clones give you the ability to access private repositories using
local user credentials, VPN's, and so forth.
Git URLs accept context configuration in their fragment section, separated by a colon :
.
The first part represents the reference that Git will check out, this can be either
a branch, a tag, or a commit SHA. The second part represents a subdirectory
inside the repository that will be used as a build context.
For example, run this command to use a directory called docker
in the branch container
:
$ docker build https://github.com/docker/rootfs.git#container:docker
The following table represents all the valid suffixes with their build contexts:
Build Syntax Suffix | Commit Used | Build Context Used |
---|---|---|
myrepo.git |
refs/heads/master |
/ |
myrepo.git#mytag |
refs/tags/mytag |
/ |
myrepo.git#mybranch |
refs/heads/mybranch |
/ |
myrepo.git#abcdef |
sha1 = abcdef |
/ |
myrepo.git#:myfolder |
refs/heads/master |
/myfolder |
myrepo.git#master:myfolder |
refs/heads/master |
/myfolder |
myrepo.git#mytag:myfolder |
refs/tags/mytag |
/myfolder |
myrepo.git#mybranch:myfolder |
refs/heads/mybranch |
/myfolder |
myrepo.git#abcdef:myfolder |
sha1 = abcdef |
/myfolder |
Instead of specifying a context, you can pass a single Dockerfile in the
URL
or pipe the file in via STDIN
. To pipe a Dockerfile from STDIN
:
docker build - < Dockerfile
If you use STDIN or specify a URL
, the system places the contents into a
file called Dockerfile
, and any -f
, --file
option is ignored. In this
scenario, there is no context.
By default the docker build
command will look for a Dockerfile
at the
root of the build context. The -f
, --file
, option lets you specify
the path to an alternative file to use instead. This is useful
in cases where the same set of files are used for multiple builds. The path
must be to a file within the build context. If a relative path is specified
then it must to be relative to the current directory.
In most cases, it's best to put each Dockerfile in an empty directory. Then, add
to that directory only the files needed for building the Dockerfile. To increase
the build's performance, you can exclude files and directories by adding a
.dockerignore
file to that directory as well. For information on creating one,
see the .dockerignore file.
If the Docker client loses connection to the daemon, the build is canceled.
This happens if you interrupt the Docker client with ctrl-c
or if the Docker
client is killed for any reason.
Note: Currently only the "run" phase of the build can be canceled until pull cancelation is implemented).
Return code
On a successful build, a return code of success 0
will be returned.
When the build fails, a non-zero failure code will be returned.
There should be informational output of the reason for failure output
to STDERR
:
$ docker build -t fail .
Sending build context to Docker daemon 2.048 kB
Sending build context to Docker daemon
Step 0 : FROM busybox
---> 4986bf8c1536
Step 1 : RUN exit 13
---> Running in e26670ec7a0a
INFO[0000] The command [/bin/sh -c exit 13] returned a non-zero code: 13
$ echo $?
1
See also:
Examples
$ docker build .
Uploading context 10240 bytes
Step 1 : FROM busybox
Pulling repository busybox
---> e9aa60c60128MB/2.284 MB (100%) endpoint: https://cdn-registry-1.docker.io/v1/
Step 2 : RUN ls -lh /
---> Running in 9c9e81692ae9
total 24
drwxr-xr-x 2 root root 4.0K Mar 12 2013 bin
drwxr-xr-x 5 root root 4.0K Oct 19 00:19 dev
drwxr-xr-x 2 root root 4.0K Oct 19 00:19 etc
drwxr-xr-x 2 root root 4.0K Nov 15 23:34 lib
lrwxrwxrwx 1 root root 3 Mar 12 2013 lib64 -> lib
dr-xr-xr-x 116 root root 0 Nov 15 23:34 proc
lrwxrwxrwx 1 root root 3 Mar 12 2013 sbin -> bin
dr-xr-xr-x 13 root root 0 Nov 15 23:34 sys
drwxr-xr-x 2 root root 4.0K Mar 12 2013 tmp
drwxr-xr-x 2 root root 4.0K Nov 15 23:34 usr
---> b35f4035db3f
Step 3 : CMD echo Hello world
---> Running in 02071fceb21b
---> f52f38b7823e
Successfully built f52f38b7823e
Removing intermediate container 9c9e81692ae9
Removing intermediate container 02071fceb21b
This example specifies that the PATH
is
.
, and so all the files in the local directory get
tar
d and sent to the Docker daemon. The PATH
specifies where to find the files for the "context" of the build on the
Docker daemon. Remember that the daemon could be running on a remote
machine and that no parsing of the Dockerfile
happens at the client side (where you're running
docker build
). That means that all the files at
PATH
get sent, not just the ones listed to
ADD in the Dockerfile.
The transfer of context from the local machine to the Docker daemon is
what the docker
client means when you see the
"Sending build context" message.
If you wish to keep the intermediate containers after the build is
complete, you must use --rm=false
. This does not
affect the build cache.
$ docker build .
Uploading context 18.829 MB
Uploading context
Step 0 : FROM busybox
---> 769b9341d937
Step 1 : CMD echo Hello world
---> Using cache
---> 99cc1ad10469
Successfully built 99cc1ad10469
$ echo ".git" > .dockerignore
$ docker build .
Uploading context 6.76 MB
Uploading context
Step 0 : FROM busybox
---> 769b9341d937
Step 1 : CMD echo Hello world
---> Using cache
---> 99cc1ad10469
Successfully built 99cc1ad10469
This example shows the use of the .dockerignore
file to exclude the .git
directory from the context. Its effect can be seen in the changed size of the
uploaded context. The builder reference contains detailed information on
creating a .dockerignore file
$ docker build -t vieux/apache:2.0 .
This will build like the previous example, but it will then tag the
resulting image. The repository name will be vieux/apache
and the tag will be 2.0
$ docker build - < Dockerfile
This will read a Dockerfile from STDIN
without context. Due to the
lack of a context, no contents of any local directory will be sent to
the Docker daemon. Since there is no context, a Dockerfile ADD
only
works if it refers to a remote URL.
$ docker build - < context.tar.gz
This will build an image for a compressed context read from STDIN
.
Supported formats are: bzip2, gzip and xz.
$ docker build github.com/creack/docker-firefox
This will clone the GitHub repository and use the cloned repository as
context. The Dockerfile at the root of the
repository is used as Dockerfile. Note that you
can specify an arbitrary Git repository by using the git://
or git@
schema.
$ docker build -f Dockerfile.debug .
This will use a file called Dockerfile.debug
for the build
instructions instead of Dockerfile
.
$ docker build -f dockerfiles/Dockerfile.debug -t myapp_debug .
$ docker build -f dockerfiles/Dockerfile.prod -t myapp_prod .
The above commands will build the current build context (as specified by
the .
) twice, once using a debug version of a Dockerfile
and once using
a production version.
$ cd /home/me/myapp/some/dir/really/deep
$ docker build -f /home/me/myapp/dockerfiles/debug /home/me/myapp
$ docker build -f ../../../../dockerfiles/debug /home/me/myapp
These two docker build
commands do the exact same thing. They both
use the contents of the debug
file instead of looking for a Dockerfile
and will use /home/me/myapp
as the root of the build context. Note that
debug
is in the directory structure of the build context, regardless of how
you refer to it on the command line.
Note:
docker build
will return ano such file or directory
error if the file or directory does not exist in the uploaded context. This may happen if there is no context, or if you specify a file that is elsewhere on the Host system. The context is limited to the current directory (and its children) for security reasons, and to ensure repeatable builds on remote Docker hosts. This is also the reason whyADD ../file
will not work.
When docker build
is run with the --cgroup-parent
option the containers used
in the build will be run with the corresponding docker run
flag.
commit
Usage: docker commit [OPTIONS] CONTAINER [REPOSITORY[:TAG]]
Create a new image from a container's changes
-a, --author="" Author (e.g., "John Hannibal Smith <hannibal@a-team.com>")
-c, --change=[] Apply specified Dockerfile instructions while committing the image
-m, --message="" Commit message
-p, --pause=true Pause container during commit
It can be useful to commit a container's file changes or settings into a new image. This allows you debug a container by running an interactive shell, or to export a working dataset to another server. Generally, it is better to use Dockerfiles to manage your images in a documented and maintainable way.
By default, the container being committed and its processes will be paused while the image is committed. This reduces the likelihood of encountering data corruption during the process of creating the commit. If this behavior is undesired, set the 'p' option to false.
The --change
option will apply Dockerfile
instructions to the image
that is created.
Supported Dockerfile
instructions:
CMD
|ENTRYPOINT
|ENV
|EXPOSE
|ONBUILD
|USER
|VOLUME
|WORKDIR
Commit a container
$ docker ps
ID IMAGE COMMAND CREATED STATUS PORTS
c3f279d17e0a ubuntu:12.04 /bin/bash 7 days ago Up 25 hours
197387f1b436 ubuntu:12.04 /bin/bash 7 days ago Up 25 hours
$ docker commit c3f279d17e0a SvenDowideit/testimage:version3
f5283438590d
$ docker images
REPOSITORY TAG ID CREATED VIRTUAL SIZE
SvenDowideit/testimage version3 f5283438590d 16 seconds ago 335.7 MB
Commit a container with new configurations
$ docker ps
ID IMAGE COMMAND CREATED STATUS PORTS
c3f279d17e0a ubuntu:12.04 /bin/bash 7 days ago Up 25 hours
197387f1b436 ubuntu:12.04 /bin/bash 7 days ago Up 25 hours
$ docker inspect -f "{{ .Config.Env }}" c3f279d17e0a
[HOME=/ PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin]
$ docker commit --change "ENV DEBUG true" c3f279d17e0a SvenDowideit/testimage:version3
f5283438590d
$ docker inspect -f "{{ .Config.Env }}" f5283438590d
[HOME=/ PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin DEBUG=true]
cp
Copy files or folders from a container's filesystem to the directory on the
host. Use '-' to write the data as a tar file to STDOUT
. CONTAINER:PATH
is
relative to the root of the container's filesystem.
Usage: docker cp CONTAINER:PATH HOSTDIR|-
Copy files/folders from the PATH to the HOSTDIR.
create
Creates a new container.
Usage: docker create [OPTIONS] IMAGE [COMMAND] [ARG...]
Create a new container
-a, --attach=[] Attach to STDIN, STDOUT or STDERR
--add-host=[] Add a custom host-to-IP mapping (host:ip)
--blkio-weight=0 Block IO weight (relative weight)
-c, --cpu-shares=0 CPU shares (relative weight)
--cap-add=[] Add Linux capabilities
--cap-drop=[] Drop Linux capabilities
--cgroup-parent="" Optional parent cgroup for the container
--cidfile="" Write the container ID to the file
--cpuset-cpus="" CPUs in which to allow execution (0-3, 0,1)
--cpuset-mems="" Memory nodes (MEMs) in which to allow execution (0-3, 0,1)
--cpu-period=0 Limit the CPU CFS (Completely Fair Scheduler) period
--cpu-quota=0 Limit the CPU CFS (Completely Fair Scheduler) quota
--device=[] Add a host device to the container
--dns=[] Set custom DNS servers
--dns-search=[] Set custom DNS search domains
-e, --env=[] Set environment variables
--entrypoint="" Overwrite the default ENTRYPOINT of the image
--env-file=[] Read in a file of environment variables
--expose=[] Expose a port or a range of ports
-h, --hostname="" Container host name
-i, --interactive=false Keep STDIN open even if not attached
--ipc="" IPC namespace to use
-l, --label=[] Set metadata on the container (e.g., --label=com.example.key=value)
--label-file=[] Read in a line delimited file of labels
--link=[] Add link to another container
--log-driver="" Logging driver for container
--lxc-conf=[] Add custom lxc options
-m, --memory="" Memory limit
--mac-address="" Container MAC address (e.g. 92:d0:c6:0a:29:33)
--name="" Assign a name to the container
--net="bridge" Set the Network mode for the container
--oom-kill-disable=false Whether to disable OOM Killer for the container or not
-P, --publish-all=false Publish all exposed ports to random ports
-p, --publish=[] Publish a container's port(s) to the host
--pid="" PID namespace to use
--uts="" UTS namespace to use
--privileged=false Give extended privileges to this container
--read-only=false Mount the container's root filesystem as read only
--restart="no" Restart policy (no, on-failure[:max-retry], always)
--security-opt=[] Security options
-t, --tty=false Allocate a pseudo-TTY
-u, --user="" Username or UID
-v, --volume=[] Bind mount a volume
--volumes-from=[] Mount volumes from the specified container(s)
-w, --workdir="" Working directory inside the container
The docker create
command creates a writeable container layer over
the specified image and prepares it for running the specified command.
The container ID is then printed to STDOUT
.
This is similar to docker run -d
except the container is never started.
You can then use the docker start <container_id>
command to start the
container at any point.
This is useful when you want to set up a container configuration ahead of time so that it is ready to start when you need it.
Please see the run command section and the Docker run reference for more details.
Examples
$ docker create -t -i fedora bash
6d8af538ec541dd581ebc2a24153a28329acb5268abe5ef868c1f1a261221752
$ docker start -a -i 6d8af538ec5
bash-4.2#
As of v1.4.0 container volumes are initialized during the docker create
phase (i.e., docker run
too). For example, this allows you to create
the
data
volume container, and then use it from another container:
$ docker create -v /data --name data ubuntu
240633dfbb98128fa77473d3d9018f6123b99c454b3251427ae190a7d951ad57
$ docker run --rm --volumes-from data ubuntu ls -la /data
total 8
drwxr-xr-x 2 root root 4096 Dec 5 04:10 .
drwxr-xr-x 48 root root 4096 Dec 5 04:11 ..
Similarly, create
a host directory bind mounted volume container, which
can then be used from the subsequent container:
$ docker create -v /home/docker:/docker --name docker ubuntu
9aa88c08f319cd1e4515c3c46b0de7cc9aa75e878357b1e96f91e2c773029f03
$ docker run --rm --volumes-from docker ubuntu ls -la /docker
total 20
drwxr-sr-x 5 1000 staff 180 Dec 5 04:00 .
drwxr-xr-x 48 root root 4096 Dec 5 04:13 ..
-rw-rw-r-- 1 1000 staff 3833 Dec 5 04:01 .ash_history
-rw-r--r-- 1 1000 staff 446 Nov 28 11:51 .ashrc
-rw-r--r-- 1 1000 staff 25 Dec 5 04:00 .gitconfig
drwxr-sr-x 3 1000 staff 60 Dec 1 03:28 .local
-rw-r--r-- 1 1000 staff 920 Nov 28 11:51 .profile
drwx--S--- 2 1000 staff 460 Dec 5 00:51 .ssh
drwxr-xr-x 32 1000 staff 1140 Dec 5 04:01 docker
diff
List the changed files and directories in a container᾿s filesystem
Usage: docker diff CONTAINER
Inspect changes on a container's filesystem
There are 3 events that are listed in the diff
:
A
- AddD
- DeleteC
- Change
For example:
$ docker diff 7bb0e258aefe
C /dev
A /dev/kmsg
C /etc
A /etc/mtab
A /go
A /go/src
A /go/src/github.com
A /go/src/github.com/docker
A /go/src/github.com/docker/docker
A /go/src/github.com/docker/docker/.git
....
events
Usage: docker events [OPTIONS]
Get real time events from the server
-f, --filter=[] Filter output based on conditions provided
--since="" Show all events created since timestamp
--until="" Stream events until this timestamp
Docker containers will report the following events:
create, destroy, die, export, kill, oom, pause, restart, start, stop, unpause
and Docker images will report:
untag, delete
Filtering
The filtering flag (-f
or --filter
) format is of "key=value". If you would like to use
multiple filters, pass multiple flags (e.g., --filter "foo=bar" --filter "bif=baz"
)
Using the same filter multiple times will be handled as a OR; for example
--filter container=588a23dac085 --filter container=a8f7720b8c22
will display events for
container 588a23dac085 OR container a8f7720b8c22
Using multiple filters will be handled as a AND; for example
--filter container=588a23dac085 --filter event=start
will display events for container
container 588a23dac085 AND the event type is start
The currently supported filters are:
- container
- event
- image
Examples
You'll need two shells for this example.
Shell 1: Listening for events:
$ docker events
Shell 2: Start and Stop containers:
$ docker start 4386fb97867d
$ docker stop 4386fb97867d
$ docker stop 7805c1d35632
Shell 1: (Again .. now showing events):
2014-05-10T17:42:14.999999999Z07:00 4386fb97867d: (from ubuntu-1:14.04) start
2014-05-10T17:42:14.999999999Z07:00 4386fb97867d: (from ubuntu-1:14.04) die
2014-05-10T17:42:14.999999999Z07:00 4386fb97867d: (from ubuntu-1:14.04) stop
2014-05-10T17:42:14.999999999Z07:00 7805c1d35632: (from redis:2.8) die
2014-05-10T17:42:14.999999999Z07:00 7805c1d35632: (from redis:2.8) stop
Show events in the past from a specified time:
$ docker events --since 1378216169
2014-03-10T17:42:14.999999999Z07:00 4386fb97867d: (from ubuntu-1:14.04) die
2014-05-10T17:42:14.999999999Z07:00 4386fb97867d: (from ubuntu-1:14.04) stop
2014-05-10T17:42:14.999999999Z07:00 7805c1d35632: (from redis:2.8) die
2014-03-10T17:42:14.999999999Z07:00 7805c1d35632: (from redis:2.8) stop
$ docker events --since '2013-09-03'
2014-09-03T17:42:14.999999999Z07:00 4386fb97867d: (from ubuntu-1:14.04) start
2014-09-03T17:42:14.999999999Z07:00 4386fb97867d: (from ubuntu-1:14.04) die
2014-05-10T17:42:14.999999999Z07:00 4386fb97867d: (from ubuntu-1:14.04) stop
2014-05-10T17:42:14.999999999Z07:00 7805c1d35632: (from redis:2.8) die
2014-09-03T17:42:14.999999999Z07:00 7805c1d35632: (from redis:2.8) stop
$ docker events --since '2013-09-03T15:49:29'
2014-09-03T15:49:29.999999999Z07:00 4386fb97867d: (from ubuntu-1:14.04) die
2014-05-10T17:42:14.999999999Z07:00 4386fb97867d: (from ubuntu-1:14.04) stop
2014-05-10T17:42:14.999999999Z07:00 7805c1d35632: (from redis:2.8) die
2014-09-03T15:49:29.999999999Z07:00 7805c1d35632: (from redis:2.8) stop
Filter events:
$ docker events --filter 'event=stop'
2014-05-10T17:42:14.999999999Z07:00 4386fb97867d: (from ubuntu-1:14.04) stop
2014-09-03T17:42:14.999999999Z07:00 7805c1d35632: (from redis:2.8) stop
$ docker events --filter 'image=ubuntu-1:14.04'
2014-05-10T17:42:14.999999999Z07:00 4386fb97867d: (from ubuntu-1:14.04) start
2014-05-10T17:42:14.999999999Z07:00 4386fb97867d: (from ubuntu-1:14.04) die
2014-05-10T17:42:14.999999999Z07:00 4386fb97867d: (from ubuntu-1:14.04) stop
$ docker events --filter 'container=7805c1d35632'
2014-05-10T17:42:14.999999999Z07:00 7805c1d35632: (from redis:2.8) die
2014-09-03T15:49:29.999999999Z07:00 7805c1d35632: (from redis:2.8) stop
$ docker events --filter 'container=7805c1d35632' --filter 'container=4386fb97867d'
2014-09-03T15:49:29.999999999Z07:00 4386fb97867d: (from ubuntu-1:14.04) die
2014-05-10T17:42:14.999999999Z07:00 4386fb97867d: (from ubuntu-1:14.04) stop
2014-05-10T17:42:14.999999999Z07:00 7805c1d35632: (from redis:2.8) die
2014-09-03T15:49:29.999999999Z07:00 7805c1d35632: (from redis:2.8) stop
$ docker events --filter 'container=7805c1d35632' --filter 'event=stop'
2014-09-03T15:49:29.999999999Z07:00 7805c1d35632: (from redis:2.8) stop
$ docker events --filter 'container=container_1' --filter 'container=container_2'
2014-09-03T15:49:29.999999999Z07:00 4386fb97867d: (from ubuntu-1:14.04) die
2014-05-10T17:42:14.999999999Z07:00 4386fb97867d: (from ubuntu-1:14.04) stop
2014-05-10T17:42:14.999999999Z07:00 7805c1d35632: (from redis:2.8) die
2014-09-03T15:49:29.999999999Z07:00 7805c1d35632: (from redis:2.8) stop
exec
Usage: docker exec [OPTIONS] CONTAINER COMMAND [ARG...]
Run a command in a running container
-d, --detach=false Detached mode: run command in the background
-i, --interactive=false Keep STDIN open even if not attached
--privileged=false Give extended privileges to the command
-t, --tty=false Allocate a pseudo-TTY
-u, --user= Username or UID (format: <name|uid>[:<group|gid>])
The docker exec
command runs a new command in a running container.
The command started using docker exec
only runs while the container's primary
process (PID 1
) is running, and it is not restarted if the container is restarted.
If the container is paused, then the docker exec
command will fail with an error:
$ docker pause test
test
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
1ae3b36715d2 ubuntu:latest "bash" 17 seconds ago Up 16 seconds (Paused) test
$ docker exec test ls
FATA[0000] Error response from daemon: Container test is paused, unpause the container before exec
$ echo $?
1
Examples
$ docker run --name ubuntu_bash --rm -i -t ubuntu bash
This will create a container named ubuntu_bash
and start a Bash session.
$ docker exec -d ubuntu_bash touch /tmp/execWorks
This will create a new file /tmp/execWorks
inside the running container
ubuntu_bash
, in the background.
$ docker exec -it ubuntu_bash bash
This will create a new Bash session in the container ubuntu_bash
.
export
Usage: docker export [OPTIONS] CONTAINER
Export the contents of a filesystem to a tar archive (streamed to STDOUT by default)
-o, --output="" Write to a file, instead of STDOUT
Produces a tarred repository to the standard output stream.
For example:
$ docker export red_panda > latest.tar
Or
$ docker export --output="latest.tar" red_panda
Note:
docker export
does not export the contents of volumes associated with the container. If a volume is mounted on top of an existing directory in the container,docker export
will export the contents of the underlying directory, not the contents of the volume.Refer to Backup, restore, or migrate data volumes in the user guide for examples on exporting data in a volume.
history
Usage: docker history [OPTIONS] IMAGE
Show the history of an image
-H, --human=true Print sizes and dates in human readable format
--no-trunc=false Don't truncate output
-q, --quiet=false Only show numeric IDs
To see how the docker:latest
image was built:
$ docker history docker
IMAGE CREATED CREATED BY SIZE COMMENT
3e23a5875458 8 days ago /bin/sh -c #(nop) ENV LC_ALL=C.UTF-8 0 B
8578938dd170 8 days ago /bin/sh -c dpkg-reconfigure locales && loc 1.245 MB
be51b77efb42 8 days ago /bin/sh -c apt-get update && apt-get install 338.3 MB
4b137612be55 6 weeks ago /bin/sh -c #(nop) ADD jessie.tar.xz in / 121 MB
750d58736b4b 6 weeks ago /bin/sh -c #(nop) MAINTAINER Tianon Gravi <ad 0 B
511136ea3c5a 9 months ago 0 B Imported from -
To see how the docker:apache
image was added to a container's base image:
$ docker history docker:scm
IMAGE CREATED CREATED BY SIZE COMMENT
2ac9d1098bf1 3 months ago /bin/bash 241.4 MB Added Apache to Fedora base image
88b42ffd1f7c 5 months ago /bin/sh -c #(nop) ADD file:1fd8d7f9f6557cafc7 373.7 MB
c69cab00d6ef 5 months ago /bin/sh -c #(nop) MAINTAINER Lokesh Mandvekar 0 B
511136ea3c5a 19 months ago 0 B Imported from -
images
Usage: docker images [OPTIONS] [REPOSITORY]
List images
-a, --all=false Show all images (default hides intermediate images)
--digests=false Show digests
-f, --filter=[] Filter output based on conditions provided
--help=false Print usage
--no-trunc=false Don't truncate output
-q, --quiet=false Only show numeric IDs
The default docker images
will show all top level
images, their repository and tags, and their virtual size.
Docker images have intermediate layers that increase reusability,
decrease disk usage, and speed up docker build
by
allowing each step to be cached. These intermediate layers are not shown
by default.
The VIRTUAL SIZE
is the cumulative space taken up by the image and all
its parent images. This is also the disk space used by the contents of the
Tar file created when you docker save
an image.
An image will be listed more than once if it has multiple repository names
or tags. This single image (identifiable by its matching IMAGE ID
)
uses up the VIRTUAL SIZE
listed only once.
Listing the most recently created images
$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
<none> <none> 77af4d6b9913 19 hours ago 1.089 GB
committ latest b6fa739cedf5 19 hours ago 1.089 GB
<none> <none> 78a85c484f71 19 hours ago 1.089 GB
docker latest 30557a29d5ab 20 hours ago 1.089 GB
<none> <none> 5ed6274db6ce 24 hours ago 1.089 GB
postgres 9 746b819f315e 4 days ago 213.4 MB
postgres 9.3 746b819f315e 4 days ago 213.4 MB
postgres 9.3.5 746b819f315e 4 days ago 213.4 MB
postgres latest 746b819f315e 4 days ago 213.4 MB
Listing the full length image IDs
$ docker images --no-trunc
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
<none> <none> 77af4d6b9913e693e8d0b4b294fa62ade6054e6b2f1ffb617ac955dd63fb0182 19 hours ago 1.089 GB
committest latest b6fa739cedf5ea12a620a439402b6004d057da800f91c7524b5086a5e4749c9f 19 hours ago 1.089 GB
<none> <none> 78a85c484f71509adeaace20e72e941f6bdd2b25b4c75da8693efd9f61a37921 19 hours ago 1.089 GB
docker latest 30557a29d5abc51e5f1d5b472e79b7e296f595abcf19fe6b9199dbbc809c6ff4 20 hours ago 1.089 GB
<none> <none> 0124422dd9f9cf7ef15c0617cda3931ee68346455441d66ab8bdc5b05e9fdce5 20 hours ago 1.089 GB
<none> <none> 18ad6fad340262ac2a636efd98a6d1f0ea775ae3d45240d3418466495a19a81b 22 hours ago 1.082 GB
<none> <none> f9f1e26352f0a3ba6a0ff68167559f64f3e21ff7ada60366e2d44a04befd1d3a 23 hours ago 1.089 GB
tryout latest 2629d1fa0b81b222fca63371ca16cbf6a0772d07759ff80e8d1369b926940074 23 hours ago 131.5 MB
<none> <none> 5ed6274db6ceb2397844896966ea239290555e74ef307030ebb01ff91b1914df 24 hours ago 1.089 GB
Listing image digests
Images that use the v2 or later format have a content-addressable identifier
called a digest
. As long as the input used to generate the image is
unchanged, the digest value is predictable. To list image digest values, use
the --digests
flag:
$ docker images --digests
REPOSITORY TAG DIGEST IMAGE ID CREATED VIRTUAL SIZE
localhost:5000/test/busybox <none> sha256:cbbf2f9a99b47fc460d422812b6a5adff7dfee951d8fa2e4a98caa0382cfbdbf 4986bf8c1536 9 weeks ago 2.43 MB
When pushing or pulling to a 2.0 registry, the push
or pull
command
output includes the image digest. You can pull
using a digest value. You can
also reference by digest in create
, run
, and rmi
commands, as well as the
FROM
image reference in a Dockerfile.
Filtering
The filtering flag (-f
or --filter
) format is of "key=value". If there is more
than one filter, then pass multiple flags (e.g., --filter "foo=bar" --filter "bif=baz"
)
The currently supported filters are:
- dangling (boolean - true or false)
- label (
label=<key>
orlabel=<key>=<value>
)
Untagged images
$ docker images --filter "dangling=true"
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
<none> <none> 8abc22fbb042 4 weeks ago 0 B
<none> <none> 48e5f45168b9 4 weeks ago 2.489 MB
<none> <none> bf747efa0e2f 4 weeks ago 0 B
<none> <none> 980fe10e5736 12 weeks ago 101.4 MB
<none> <none> dea752e4e117 12 weeks ago 101.4 MB
<none> <none> 511136ea3c5a 8 months ago 0 B
This will display untagged images, that are the leaves of the images tree (not
intermediary layers). These images occur when a new build of an image takes the
repo:tag
away from the image ID, leaving it untagged. A warning will be issued
if trying to remove an image when a container is presently using it.
By having this flag it allows for batch cleanup.
Ready for use by docker rmi ...
, like:
$ docker rmi $(docker images -f "dangling=true" -q)
8abc22fbb042
48e5f45168b9
bf747efa0e2f
980fe10e5736
dea752e4e117
511136ea3c5a
NOTE: Docker will warn you if any containers exist that are using these untagged images.
import
Usage: docker import URL|- [REPOSITORY[:TAG]]
Create an empty filesystem image and import the contents of the
tarball (.tar, .tar.gz, .tgz, .bzip, .tar.xz, .txz) into it, then
optionally tag it.
-c, --change=[] Apply specified Dockerfile instructions while importing the image
URLs must start with http
and point to a single file archive (.tar,
.tar.gz, .tgz, .bzip, .tar.xz, or .txz) containing a root filesystem. If
you would like to import from a local directory or archive, you can use
the -
parameter to take the data from STDIN
.
The --change
option will apply Dockerfile
instructions to the image
that is created.
Supported Dockerfile
instructions:
CMD
|ENTRYPOINT
|ENV
|EXPOSE
|ONBUILD
|USER
|VOLUME
|WORKDIR
Examples
Import from a remote location:
This will create a new untagged image.
$ docker import http://example.com/exampleimage.tgz
Import from a local file:
Import to docker via pipe and STDIN
.
$ cat exampleimage.tgz | docker import - exampleimagelocal:new
Import from a local directory:
$ sudo tar -c . | docker import - exampleimagedir
Import from a local directory with new configurations:
$ sudo tar -c . | docker import --change "ENV DEBUG true" - exampleimagedir
Note the sudo
in this example – you must preserve
the ownership of the files (especially root ownership) during the
archiving with tar. If you are not root (or the sudo command) when you
tar, then the ownerships might not get preserved.
info
Usage: docker info
Display system-wide information
For example:
$ docker -D info
Containers: 14
Images: 52
Storage Driver: aufs
Root Dir: /var/lib/docker/aufs
Backing Filesystem: extfs
Dirs: 545
Execution Driver: native-0.2
Logging Driver: json-file
Kernel Version: 3.13.0-24-generic
Operating System: Ubuntu 14.04 LTS
CPUs: 1
Name: prod-server-42
ID: 7TRN:IPZB:QYBB:VPBQ:UMPP:KARE:6ZNR:XE6T:7EWV:PKF4:ZOJD:TPYS
Total Memory: 2 GiB
Debug mode (server): false
Debug mode (client): true
File Descriptors: 10
Goroutines: 9
System Time: Tue Mar 10 18:38:57 UTC 2015
EventsListeners: 0
Init Path: /usr/bin/docker
Docker Root Dir: /var/lib/docker
Http Proxy: http://test:test@localhost:8080
Https Proxy: https://test:test@localhost:8080
No Proxy: 9.81.1.160
Username: svendowideit
Registry: [https://index.docker.io/v1/]
Labels:
storage=ssd
The global -D
option tells all docker
commands to output debug information.
When sending issue reports, please use docker version
and docker -D info
to
ensure we know how your setup is configured.
inspect
Usage: docker inspect [OPTIONS] CONTAINER|IMAGE [CONTAINER|IMAGE...]
Return low-level information on a container or image
-f, --format="" Format the output using the given go template
By default, this will render all results in a JSON array. If a format is specified, the given template will be executed for each result.
Go's text/template package describes all the details of the format.
Examples
Get an instance's IP address:
For the most part, you can pick out any field from the JSON in a fairly straightforward manner.
$ docker inspect --format='{{.NetworkSettings.IPAddress}}' $INSTANCE_ID
Get an instance's MAC Address:
For the most part, you can pick out any field from the JSON in a fairly straightforward manner.
$ docker inspect --format='{{.NetworkSettings.MacAddress}}' $INSTANCE_ID
Get an instance's log path:
$ docker inspect --format='{{.LogPath}}' $INSTANCE_ID
List All Port Bindings:
One can loop over arrays and maps in the results to produce simple text output:
$ docker inspect --format='{{range $p, $conf := .NetworkSettings.Ports}} {{$p}} -> {{(index $conf 0).HostPort}} {{end}}' $INSTANCE_ID
Find a Specific Port Mapping:
The .Field
syntax doesn't work when the field name begins with a
number, but the template language's index
function does. The
.NetworkSettings.Ports
section contains a map of the internal port
mappings to a list of external address/port objects, so to grab just the
numeric public port, you use index
to find the specific port map, and
then index
0 contains the first object inside of that. Then we ask for
the HostPort
field to get the public address.
$ docker inspect --format='{{(index (index .NetworkSettings.Ports "8787/tcp") 0).HostPort}}' $INSTANCE_ID
Get config:
The .Field
syntax doesn't work when the field contains JSON data, but
the template language's custom json
function does. The .config
section contains complex JSON object, so to grab it as JSON, you use
json
to convert the configuration object into JSON.
$ docker inspect --format='{{json .config}}' $INSTANCE_ID
kill
Usage: docker kill [OPTIONS] CONTAINER [CONTAINER...]
Kill a running container using SIGKILL or a specified signal
-s, --signal="KILL" Signal to send to the container
The main process inside the container will be sent SIGKILL
, or any
signal specified with option --signal
.
load
Usage: docker load [OPTIONS]
Load an image from a tar archive on STDIN
-i, --input="" Read from a tar archive file, instead of STDIN
Loads a tarred repository from a file or the standard input stream. Restores both images and tags.
$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
$ docker load < busybox.tar
$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
busybox latest 769b9341d937 7 weeks ago 2.489 MB
$ docker load --input fedora.tar
$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
busybox latest 769b9341d937 7 weeks ago 2.489 MB
fedora rawhide 0d20aec6529d 7 weeks ago 387 MB
fedora 20 58394af37342 7 weeks ago 385.5 MB
fedora heisenbug 58394af37342 7 weeks ago 385.5 MB
fedora latest 58394af37342 7 weeks ago 385.5 MB
login
Usage: docker login [OPTIONS] [SERVER]
Register or log in to a Docker registry server, if no server is
specified "https://index.docker.io/v1/" is the default.
-e, --email="" Email
-p, --password="" Password
-u, --username="" Username
If you want to login to a self-hosted registry you can specify this by adding the server name.
example:
$ docker login localhost:8080
logout
Usage: docker logout [SERVER]
Log out from a Docker registry, if no server is
specified "https://index.docker.io/v1/" is the default.
For example:
$ docker logout localhost:8080
logs
Usage: docker logs [OPTIONS] CONTAINER
Fetch the logs of a container
-f, --follow=false Follow log output
--since="" Show logs since timestamp
-t, --timestamps=false Show timestamps
--tail="all" Number of lines to show from the end of the logs
NOTE: this command is available only for containers with json-file
logging
driver.
The docker logs
command batch-retrieves logs present at the time of execution.
The docker logs --follow
command will continue streaming the new output from
the container's STDOUT
and STDERR
.
Passing a negative number or a non-integer to --tail
is invalid and the
value is set to all
in that case. This behavior may change in the future.
The docker logs --timestamp
commands will add an RFC3339Nano
timestamp, for example 2014-09-16T06:17:46.000000000Z
, to each
log entry. To ensure that the timestamps for are aligned the
nano-second part of the timestamp will be padded with zero when necessary.
The --since
option shows logs of a container generated only after
the given date, specified as RFC 3339 or UNIX timestamp. The --since
option
can be combined with the --follow
and --tail
options.
pause
Usage: docker pause CONTAINER [CONTAINER...]
Pause all processes within a container
The docker pause
command uses the cgroups freezer to suspend all processes in
a container. Traditionally, when suspending a process the SIGSTOP
signal is
used, which is observable by the process being suspended. With the cgroups freezer
the process is unaware, and unable to capture, that it is being suspended,
and subsequently resumed.
See the cgroups freezer documentation for further details.
port
Usage: docker port CONTAINER [PRIVATE_PORT[/PROTO]]
List port mappings for the CONTAINER, or lookup the public-facing port that is
NAT-ed to the PRIVATE_PORT
You can find out all the ports mapped by not specifying a PRIVATE_PORT
, or
just a specific mapping:
$ docker ps test
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
b650456536c7 busybox:latest top 54 minutes ago Up 54 minutes 0.0.0.0:1234->9876/tcp, 0.0.0.0:4321->7890/tcp test
$ docker port test
7890/tcp -> 0.0.0.0:4321
9876/tcp -> 0.0.0.0:1234
$ docker port test 7890/tcp
0.0.0.0:4321
$ docker port test 7890/udp
2014/06/24 11:53:36 Error: No public port '7890/udp' published for test
$ docker port test 7890
0.0.0.0:4321
ps
Usage: docker ps [OPTIONS]
List containers
-a, --all=false Show all containers (default shows just running)
--before="" Show only container created before Id or Name
-f, --filter=[] Filter output based on conditions provided
-l, --latest=false Show the latest created container, include non-running
-n=-1 Show n last created containers, include non-running
--no-trunc=false Don't truncate output
-q, --quiet=false Only display numeric IDs
-s, --size=false Display total file sizes
--since="" Show created since Id or Name, include non-running
Running docker ps --no-trunc
showing 2 linked containers.
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
4c01db0b339c ubuntu:12.04 bash 17 seconds ago Up 16 seconds 3300-3310/tcp webapp
d7886598dbe2 crosbymichael/redis:latest /redis-server --dir 33 minutes ago Up 33 minutes 6379/tcp redis,webapp/db
docker ps
will show only running containers by default. To see all containers:
docker ps -a
docker ps
will group exposed ports into a single range if possible. E.g., a container that exposes TCP ports 100, 101, 102
will display 100-102/tcp
in the PORTS
column.
Filtering
The filtering flag (-f
or --filter)
format is a key=value
pair. If there is more
than one filter, then pass multiple flags (e.g. --filter "foo=bar" --filter "bif=baz"
)
The currently supported filters are:
- id (container's id)
- label (
label=<key>
orlabel=<key>=<value>
) - name (container's name)
- exited (int - the code of exited containers. Only useful with
--all
) - status (restarting|running|paused|exited)
Successfully exited containers
$ docker ps -a --filter 'exited=0'
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
ea09c3c82f6e registry:latest /srv/run.sh 2 weeks ago Exited (0) 2 weeks ago 127.0.0.1:5000->5000/tcp desperate_leakey
106ea823fe4e fedora:latest /bin/sh -c 'bash -l' 2 weeks ago Exited (0) 2 weeks ago determined_albattani
48ee228c9464 fedora:20 bash 2 weeks ago Exited (0) 2 weeks ago tender_torvalds
This shows all the containers that have exited with status of '0'
pull
Usage: docker pull [OPTIONS] NAME[:TAG] | [REGISTRY_HOST[:REGISTRY_PORT]/]NAME[:TAG]
Pull an image or a repository from the registry
-a, --all-tags=false Download all tagged images in the repository
Most of your images will be created on top of a base image from the Docker Hub registry.
Docker Hub contains many pre-built images that you
can pull
and try without needing to define and configure your own.
It is also possible to manually specify the path of a registry to pull from.
For example, if you have set up a local registry, you can specify its path to
pull from it. A repository path is similar to a URL, but does not contain
a protocol specifier (https://
, for example).
To download a particular image, or set of images (i.e., a repository),
use docker pull
:
$ docker pull debian
# will pull the debian:latest image and its intermediate layers
$ docker pull debian:testing
# will pull the image named debian:testing and any intermediate
# layers it is based on.
$ docker pull debian@sha256:cbbf2f9a99b47fc460d422812b6a5adff7dfee951d8fa2e4a98caa0382cfbdbf
# will pull the image from the debian repository with the digest
# sha256:cbbf2f9a99b47fc460d422812b6a5adff7dfee951d8fa2e4a98caa0382cfbdbf
# and any intermediate layers it is based on.
# (Typically the empty `scratch` image, a MAINTAINER layer,
# and the un-tarred base).
$ docker pull --all-tags centos
# will pull all the images from the centos repository
$ docker pull registry.hub.docker.com/debian
# manually specifies the path to the default Docker registry. This could
# be replaced with the path to a local registry to pull from another source.
# sudo docker pull myhub.com:8080/test-image
push
Usage: docker push NAME[:TAG]
Push an image or a repository to the registry
Use docker push
to share your images to the Docker Hub
registry or to a self-hosted one.
rename
Usage: docker rename OLD_NAME NEW_NAME
rename a existing container to a NEW_NAME
The docker rename
command allows the container to be renamed to a different name.
restart
Usage: docker restart [OPTIONS] CONTAINER [CONTAINER...]
Restart a running container
-t, --time=10 Seconds to wait for stop before killing the container
rm
Usage: docker rm [OPTIONS] CONTAINER [CONTAINER...]
Remove one or more containers
-f, --force=false Force the removal of a running container (uses SIGKILL)
-l, --link=false Remove the specified link
-v, --volumes=false Remove the volumes associated with the container
Examples
$ docker rm /redis
/redis
This will remove the container referenced under the link
/redis
.
$ docker rm --link /webapp/redis
/webapp/redis
This will remove the underlying link between /webapp
and the /redis
containers removing all network communication.
$ docker rm --force redis
redis
The main process inside the container referenced under the link /redis
will receive
SIGKILL
, then the container will be removed.
$ docker rm $(docker ps -a -q)
This command will delete all stopped containers. The command docker ps -a -q
will return all existing container IDs and pass them to the rm
command which will delete them. Any running containers will not be
deleted.
rmi
Usage: docker rmi [OPTIONS] IMAGE [IMAGE...]
Remove one or more images
-f, --force=false Force removal of the image
--no-prune=false Do not delete untagged parents
Removing tagged images
You can remove an image using its short or long ID, its tag, or its digest. If an image has one or more tag or digest reference, you must remove all of them before the image is removed.
$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
test1 latest fd484f19954f 23 seconds ago 7 B (virtual 4.964 MB)
test latest fd484f19954f 23 seconds ago 7 B (virtual 4.964 MB)
test2 latest fd484f19954f 23 seconds ago 7 B (virtual 4.964 MB)
$ docker rmi fd484f19954f
Error: Conflict, cannot delete image fd484f19954f because it is tagged in multiple repositories, use -f to force
2013/12/11 05:47:16 Error: failed to remove one or more images
$ docker rmi test1
Untagged: test1:latest
$ docker rmi test2
Untagged: test2:latest
$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
test latest fd484f19954f 23 seconds ago 7 B (virtual 4.964 MB)
$ docker rmi test
Untagged: test:latest
Deleted: fd484f19954f4920da7ff372b5067f5b7ddb2fd3830cecd17b96ea9e286ba5b8
If you use the -f
flag and specify the image's short or long ID, then this
command untags and removes all images that match the specified ID.
$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
test1 latest fd484f19954f 23 seconds ago 7 B (virtual 4.964 MB)
test latest fd484f19954f 23 seconds ago 7 B (virtual 4.964 MB)
test2 latest fd484f19954f 23 seconds ago 7 B (virtual 4.964 MB)
$ docker rmi -f fd484f19954f
Untagged: test1:latest
Untagged: test:latest
Untagged: test2:latest
Deleted: fd484f19954f4920da7ff372b5067f5b7ddb2fd3830cecd17b96ea9e286ba5b8
An image pulled by digest has no tag associated with it:
$ docker images --digests
REPOSITORY TAG DIGEST IMAGE ID CREATED VIRTUAL SIZE
localhost:5000/test/busybox <none> sha256:cbbf2f9a99b47fc460d422812b6a5adff7dfee951d8fa2e4a98caa0382cfbdbf 4986bf8c1536 9 weeks ago 2.43 MB
To remove an image using its digest:
$ docker rmi localhost:5000/test/busybox@sha256:cbbf2f9a99b47fc460d422812b6a5adff7dfee951d8fa2e4a98caa0382cfbdbf
Untagged: localhost:5000/test/busybox@sha256:cbbf2f9a99b47fc460d422812b6a5adff7dfee951d8fa2e4a98caa0382cfbdbf
Deleted: 4986bf8c15363d1c5d15512d5266f8777bfba4974ac56e3270e7760f6f0a8125
Deleted: ea13149945cb6b1e746bf28032f02e9b5a793523481a0a18645fc77ad53c4ea2
Deleted: df7546f9f060a2268024c8a230d8639878585defcc1bc6f79d2728a13957871b
run
Usage: docker run [OPTIONS] IMAGE [COMMAND] [ARG...]
Run a command in a new container
-a, --attach=[] Attach to STDIN, STDOUT or STDERR
--add-host=[] Add a custom host-to-IP mapping (host:ip)
--blkio-weight=0 Block IO weight (relative weight)
-c, --cpu-shares=0 CPU shares (relative weight)
--cap-add=[] Add Linux capabilities
--cap-drop=[] Drop Linux capabilities
--cidfile="" Write the container ID to the file
--cpuset-cpus="" CPUs in which to allow execution (0-3, 0,1)
--cpuset-mems="" Memory nodes (MEMs) in which to allow execution (0-3, 0,1)
--cpu-period=0 Limit the CPU CFS (Completely Fair Scheduler) period
--cpu-quota=0 Limit the CPU CFS (Completely Fair Scheduler) quota
-d, --detach=false Run container in background and print container ID
--device=[] Add a host device to the container
--dns=[] Set custom DNS servers
--dns-search=[] Set custom DNS search domains
-e, --env=[] Set environment variables
--entrypoint="" Overwrite the default ENTRYPOINT of the image
--env-file=[] Read in a file of environment variables
--expose=[] Expose a port or a range of ports
-h, --hostname="" Container host name
--help=false Print usage
-i, --interactive=false Keep STDIN open even if not attached
--ipc="" IPC namespace to use
--link=[] Add link to another container
--log-driver="" Logging driver for container
--lxc-conf=[] Add custom lxc options
-m, --memory="" Memory limit
-l, --label=[] Set metadata on the container (e.g., --label=com.example.key=value)
--label-file=[] Read in a file of labels (EOL delimited)
--mac-address="" Container MAC address (e.g. 92:d0:c6:0a:29:33)
--memory-swap="" Total memory (memory + swap), '-1' to disable swap
--name="" Assign a name to the container
--net="bridge" Set the Network mode for the container
--oom-kill-disable=false Whether to disable OOM Killer for the container or not
-P, --publish-all=false Publish all exposed ports to random ports
-p, --publish=[] Publish a container's port(s) to the host
--pid="" PID namespace to use
--uts="" UTS namespace to use
--privileged=false Give extended privileges to this container
--read-only=false Mount the container's root filesystem as read only
--restart="no" Restart policy (no, on-failure[:max-retry], always)
--rm=false Automatically remove the container when it exits
--security-opt=[] Security Options
--sig-proxy=true Proxy received signals to the process
-t, --tty=false Allocate a pseudo-TTY
-u, --user="" Username or UID (format: <name|uid>[:<group|gid>])
-v, --volume=[] Bind mount a volume
--volumes-from=[] Mount volumes from the specified container(s)
-w, --workdir="" Working directory inside the container
The docker run
command first creates
a writeable container layer over the
specified image, and then starts
it using the specified command. That is,
docker run
is equivalent to the API /containers/create
then
/containers/(id)/start
. A stopped container can be restarted with all its
previous changes intact using docker start
. See docker ps -a
to view a list
of all containers.
There is detailed information about docker run
in the Docker run reference.
The docker run
command can be used in combination with docker commit
to
change the command that a container runs.
See the Docker User Guide for more detailed
information about the --expose
, -p
, -P
and --link
parameters,
and linking containers.
Examples
$ docker run --name test -it debian
$$ exit 13
exit
$ echo $?
13
$ docker ps -a | grep test
275c44472aeb debian:7 "/bin/bash" 26 seconds ago Exited (13) 17 seconds ago test
In this example, we are running bash
interactively in the debian:latest
image, and giving
the container the name test
. We then quit bash
by running exit 13
, which means bash
will have an exit code of 13
. This is then passed on to the caller of docker run
, and
is recorded in the test
container metadata.
$ docker run --cidfile /tmp/docker_test.cid ubuntu echo "test"
This will create a container and print test
to the console. The cidfile
flag makes Docker attempt to create a new file and write the container ID to it.
If the file exists already, Docker will return an error. Docker will close this
file when docker run
exits.
$ docker run -t -i --rm ubuntu bash
root@bc338942ef20:/# mount -t tmpfs none /mnt
mount: permission denied
This will not work, because by default, most potentially dangerous kernel
capabilities are dropped; including cap_sys_admin
(which is required to mount
filesystems). However, the --privileged
flag will allow it to run:
$ docker run --privileged ubuntu bash
root@50e3f57e16e6:/# mount -t tmpfs none /mnt
root@50e3f57e16e6:/# df -h
Filesystem Size Used Avail Use% Mounted on
none 1.9G 0 1.9G 0% /mnt
The --privileged
flag gives all capabilities to the container, and it also
lifts all the limitations enforced by the device
cgroup controller. In other
words, the container can then do almost everything that the host can do. This
flag exists to allow special use-cases, like running Docker within Docker.
$ docker run -w /path/to/dir/ -i -t ubuntu pwd
The -w
lets the command being executed inside directory given, here
/path/to/dir/
. If the path does not exists it is created inside the container.
$ docker run -v `pwd`:`pwd` -w `pwd` -i -t ubuntu pwd
The -v
flag mounts the current working directory into the container. The -w
lets the command being executed inside the current working directory, by
changing into the directory to the value returned by pwd
. So this
combination executes the command using the container, but inside the
current working directory.
$ docker run -v /doesnt/exist:/foo -w /foo -i -t ubuntu bash
When the host directory of a bind-mounted volume doesn't exist, Docker
will automatically create this directory on the host for you. In the
example above, Docker will create the /doesnt/exist
folder before starting your container.
$ docker run --read-only -v /icanwrite busybox touch /icanwrite here
Volumes can be used in combination with --read-only
to control where
a container writes files. The --read-only
flag mounts the container's root
filesystem as read only prohibiting writes to locations other than the
specified volumes for the container.
$ docker run -t -i -v /var/run/docker.sock:/var/run/docker.sock -v ./static-docker:/usr/bin/docker busybox sh
By bind-mounting the docker unix socket and statically linked docker binary (such as that provided by https://get.docker.com), you give the container the full access to create and manipulate the host's Docker daemon.
$ docker run -p 127.0.0.1:80:8080 ubuntu bash
This binds port 8080
of the container to port 80
on 127.0.0.1
of
the host machine. The Docker User Guide
explains in detail how to manipulate ports in Docker.
$ docker run --expose 80 ubuntu bash
This exposes port 80
of the container for use within a link without
publishing the port to the host system's interfaces. The Docker User
Guide explains in detail how to manipulate
ports in Docker.
$ docker run -e MYVAR1 --env MYVAR2=foo --env-file ./env.list ubuntu bash
This sets environmental variables in the container. For illustration all three
flags are shown here. Where -e
, --env
take an environment variable and
value, or if no =
is provided, then that variable's current value is passed
through (i.e. $MYVAR1
from the host is set to $MYVAR1
in the container).
When no =
is provided and that variable is not defined in the client's
environment then that variable will be removed from the container's list of
environment variables.
All three flags, -e
, --env
and --env-file
can be repeated.
Regardless of the order of these three flags, the --env-file
are processed
first, and then -e
, --env
flags. This way, the -e
or --env
will
override variables as needed.
$ cat ./env.list
TEST_FOO=BAR
$ docker run --env TEST_FOO="This is a test" --env-file ./env.list busybox env | grep TEST_FOO
TEST_FOO=This is a test
The --env-file
flag takes a filename as an argument and expects each line
to be in the VAR=VAL
format, mimicking the argument passed to --env
. Comment
lines need only be prefixed with #
An example of a file passed with --env-file
$ cat ./env.list
TEST_FOO=BAR
# this is a comment
TEST_APP_DEST_HOST=10.10.0.127
TEST_APP_DEST_PORT=8888
# pass through this variable from the caller
TEST_PASSTHROUGH
$ sudo TEST_PASSTHROUGH=howdy docker run --env-file ./env.list busybox env
HOME=/
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
HOSTNAME=5198e0745561
TEST_FOO=BAR
TEST_APP_DEST_HOST=10.10.0.127
TEST_APP_DEST_PORT=8888
TEST_PASSTHROUGH=howdy
$ docker run --name console -t -i ubuntu bash
A label is a a key=value
pair that applies metadata to a container. To label a container with two labels:
$ docker run -l my-label --label com.example.foo=bar ubuntu bash
The my-label
key doesn't specify a value so the label defaults to an empty
string(""
). To add multiple labels, repeat the label flag (-l
or --label
).
The key=value
must be unique to avoid overwriting the label value. If you
specify labels with identical keys but different values, each subsequent value
overwrites the previous. Docker uses the last key=value
you supply.
Use the --label-file
flag to load multiple labels from a file. Delimit each
label in the file with an EOL mark. The example below loads labels from a
labels file in the current directory:
$ docker run --label-file ./labels ubuntu bash
The label-file format is similar to the format for loading environment variables. (Unlike environment variables, labels are not visible to processes running inside a container.) The following example illustrates a label-file format:
com.example.label1="a label"
# this is a comment
com.example.label2=another\ label
com.example.label3
You can load multiple label-files by supplying multiple --label-file
flags.
For additional information on working with labels, see Labels - custom metadata in Docker in the Docker User Guide.
$ docker run --link /redis:redis --name console ubuntu bash
The --link
flag will link the container named /redis
into the newly
created container with the alias redis
. The new container can access the
network and environment of the redis
container via environment variables.
The --link
flag will also just accept the form <name or id>
in which case
the alias will match the name. For instance, you could have written the previous
example as:
$ docker run --link redis --name console ubuntu bash
The --name
flag will assign the name console
to the newly created
container.
$ docker run --volumes-from 777f7dc92da7 --volumes-from ba8c0c54f0f2:ro -i -t ubuntu pwd
The --volumes-from
flag mounts all the defined volumes from the referenced
containers. Containers can be specified by repetitions of the --volumes-from
argument. The container ID may be optionally suffixed with :ro
or :rw
to
mount the volumes in read-only or read-write mode, respectively. By default,
the volumes are mounted in the same mode (read write or read only) as
the reference container.
The -a
flag tells docker run
to bind to the container's STDIN
, STDOUT
or
STDERR
. This makes it possible to manipulate the output and input as needed.
$ echo "test" | docker run -i -a stdin ubuntu cat -
This pipes data into a container and prints the container's ID by attaching
only to the container's STDIN
.
$ docker run -a stderr ubuntu echo test
This isn't going to print anything unless there's an error because we've
only attached to the STDERR
of the container. The container's logs
still store what's been written to STDERR
and STDOUT
.
$ cat somefile | docker run -i -a stdin mybuilder dobuild
This is how piping a file into a container could be done for a build.
The container's ID will be printed after the build is done and the build
logs could be retrieved using docker logs
. This is
useful if you need to pipe a file or something else into a container and
retrieve the container's ID once the container has finished running.
$ docker run --device=/dev/sdc:/dev/xvdc --device=/dev/sdd --device=/dev/zero:/dev/nulo -i -t ubuntu ls -l /dev/{xvdc,sdd,nulo}
brw-rw---- 1 root disk 8, 2 Feb 9 16:05 /dev/xvdc
brw-rw---- 1 root disk 8, 3 Feb 9 16:05 /dev/sdd
crw-rw-rw- 1 root root 1, 5 Feb 9 16:05 /dev/nulo
It is often necessary to directly expose devices to a container. The --device
option enables that. For example, a specific block storage device or loop
device or audio device can be added to an otherwise unprivileged container
(without the --privileged
flag) and have the application directly access it.
By default, the container will be able to read
, write
and mknod
these devices.
This can be overridden using a third :rwm
set of options to each --device
flag:
$ docker run --device=/dev/sda:/dev/xvdc --rm -it ubuntu fdisk /dev/xvdc
Command (m for help): q
$ docker run --device=/dev/sda:/dev/xvdc:r --rm -it ubuntu fdisk /dev/xvdc
You will not be able to write the partition table.
Command (m for help): q
$ docker run --device=/dev/sda:/dev/xvdc --rm -it ubuntu fdisk /dev/xvdc
Command (m for help): q
$ docker run --device=/dev/sda:/dev/xvdc:m --rm -it ubuntu fdisk /dev/xvdc
fdisk: unable to open /dev/xvdc: Operation not permitted
Note:
--device
cannot be safely used with ephemeral devices. Block devices that may be removed should not be added to untrusted containers with--device
.
A complete example:
$ docker run -d --name static static-web-files sh
$ docker run -d --expose=8098 --name riak riakserver
$ docker run -d -m 100m -e DEVELOPMENT=1 -e BRANCH=example-code -v $(pwd):/app/bin:ro --name app appserver
$ docker run -d -p 1443:443 --dns=10.0.0.1 --dns-search=dev.org -v /var/log/httpd --volumes-from static --link riak --link app -h www.sven.dev.org --name web webserver
$ docker run -t -i --rm --volumes-from web -w /var/log/httpd busybox tail -f access.log
This example shows five containers that might be set up to test a web application change:
- Start a pre-prepared volume image
static-web-files
(in the background) that has CSS, image and static HTML in it, (with aVOLUME
instruction in the Dockerfile to allow the web server to use those files); - Start a pre-prepared
riakserver
image, give the container nameriak
and expose port8098
to any containers that link to it; - Start the
appserver
image, restricting its memory usage to 100MB, setting two environment variablesDEVELOPMENT
andBRANCH
and bind-mounting the current directory ($(pwd)
) in the container in read-only mode as/app/bin
; - Start the
webserver
, mapping port443
in the container to port1443
on the Docker server, setting the DNS server to10.0.0.1
and DNS search domain todev.org
, creating a volume to put the log files into (so we can access it from another container), then importing the files from the volume exposed by thestatic
container, and linking to all exposed ports fromriak
andapp
. Lastly, we set the hostname toweb.sven.dev.org
so its consistent with the pre-generated SSL certificate; - Finally, we create a container that runs
tail -f access.log
using the logs volume from theweb
container, setting the workdir to/var/log/httpd
. The--rm
option means that when the container exits, the container's layer is removed.
Restart policies
Use Docker's --restart
to specify a container's restart policy. A restart
policy controls whether the Docker daemon restarts a container after exit.
Docker supports the following restart policies:
Policy | Result |
---|---|
no | Do not automatically restart the container when it exits. This is the default. |
on-failure[:max-retries] | Restart only if the container exits with a non-zero exit status. Optionally, limit the number of restart retries the Docker daemon attempts. |
always | Always restart the container regardless of the exit status. When you specify always, the Docker daemon will try to restart the container indefinitely. |
$ docker run --restart=always redis
This will run the redis
container with a restart policy of always
so that if the container exits, Docker will restart it.
More detailed information on restart policies can be found in the Restart Policies (--restart) section of the Docker run reference page.
Adding entries to a container hosts file
You can add other hosts into a container's /etc/hosts
file by using one or more
--add-host
flags. This example adds a static address for a host named docker
:
$ docker run --add-host=docker:10.180.0.1 --rm -it debian
$$ ping docker
PING docker (10.180.0.1): 48 data bytes
56 bytes from 10.180.0.1: icmp_seq=0 ttl=254 time=7.600 ms
56 bytes from 10.180.0.1: icmp_seq=1 ttl=254 time=30.705 ms
^C--- docker ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max/stddev = 7.600/19.152/30.705/11.553 ms
Sometimes you need to connect to the Docker host from within your
container. To enable this, pass the Docker host's IP address to
the container using the --add-host
flag. To find the host's address,
use the ip addr show
command.
The flags you pass to ip addr show
depend on whether you are
using IPv4 or IPv6 networking in your containers. Use the following
flags for IPv4 address retrieval for a network device named eth0
:
$ HOSTIP=`ip -4 addr show scope global dev eth0 | grep inet | awk '{print \$2}' | cut -d / -f 1`
$ docker run --add-host=docker:${HOSTIP} --rm -it debian
For IPv6 use the -6
flag instead of the -4
flag. For other network
devices, replace eth0
with the correct device name (for example docker0
for the bridge device).
Setting ulimits in a container
Since setting ulimit
settings in a container requires extra privileges not
available in the default container, you can set these using the --ulimit
flag.
--ulimit
is specified with a soft and hard limit as such:
<type>=<soft limit>[:<hard limit>]
, for example:
$ docker run --ulimit nofile=1024:1024 --rm debian ulimit -n
1024
Note: If you do not provide a
hard limit
, thesoft limit
will be used for both values. If noulimits
are set, they will be inherited from the defaultulimits
set on the daemon.as
option is disabled now. In other words, the following script is not supported:$ docker run -it --ulimit as=1024 fedora /bin/bash
save
Usage: docker save [OPTIONS] IMAGE [IMAGE...]
Save an image(s) to a tar archive (streamed to STDOUT by default)
-o, --output="" Write to a file, instead of STDOUT
Produces a tarred repository to the standard output stream.
Contains all parent layers, and all tags + versions, or specified repo:tag
, for
each argument provided.
It is used to create a backup that can then be used with docker load
$ docker save busybox > busybox.tar
$ ls -sh busybox.tar
2.7M busybox.tar
$ docker save --output busybox.tar busybox
$ ls -sh busybox.tar
2.7M busybox.tar
$ docker save -o fedora-all.tar fedora
$ docker save -o fedora-latest.tar fedora:latest
It is even useful to cherry-pick particular tags of an image repository
$ docker save -o ubuntu.tar ubuntu:lucid ubuntu:saucy
search
Search Docker Hub for images
Usage: docker search [OPTIONS] TERM
Search the Docker Hub for images
--automated=false Only show automated builds
--no-trunc=false Don't truncate output
-s, --stars=0 Only displays with at least x stars
See Find Public Images on Docker Hub for more details on finding shared images from the command line.
Note: Search queries will only return up to 25 results
start
Usage: docker start [OPTIONS] CONTAINER [CONTAINER...]
Start one or more stopped containers
-a, --attach=false Attach STDOUT/STDERR and forward signals
-i, --interactive=false Attach container's STDIN
stats
Usage: docker stats CONTAINER [CONTAINER...]
Display a live stream of one or more containers' resource usage statistics
--help=false Print usage
--no-stream=false Disable streaming stats and only pull the first result
Running docker stats
on multiple containers
$ docker stats redis1 redis2
CONTAINER CPU % MEM USAGE/LIMIT MEM % NET I/O
redis1 0.07% 796 KB/64 MB 1.21% 788 B/648 B
redis2 0.07% 2.746 MB/64 MB 4.29% 1.266 KB/648 B
The docker stats
command will only return a live stream of data for running
containers. Stopped containers will not return any data.
Note: If you want more detailed information about a container's resource usage, use the API endpoint.
stop
Usage: docker stop [OPTIONS] CONTAINER [CONTAINER...]
Stop a running container by sending SIGTERM and then SIGKILL after a
grace period
-t, --time=10 Seconds to wait for stop before killing it
The main process inside the container will receive SIGTERM
, and after a
grace period, SIGKILL
.
tag
Usage: docker tag [OPTIONS] IMAGE[:TAG] [REGISTRYHOST/][USERNAME/]NAME[:TAG]
Tag an image into a repository
-f, --force=false Force
You can group your images together using names and tags, and then upload them to Share Images via Repositories.
top
Usage: docker top CONTAINER [ps OPTIONS]
Display the running processes of a container
unpause
Usage: docker unpause CONTAINER [CONTAINER...]
Unpause all processes within a container
The docker unpause
command uses the cgroups freezer to un-suspend all
processes in a container.
See the cgroups freezer documentation for further details.
version
Usage: docker version
Show the Docker version information.
Show the Docker version, API version, Git commit, Go version and OS/architecture of both Docker client and daemon. Example use:
$ docker version
Client version: 1.5.0
Client API version: 1.17
Go version (client): go1.4.1
Git commit (client): a8a31ef
OS/Arch (client): darwin/amd64
Server version: 1.5.0
Server API version: 1.17
Go version (server): go1.4.1
Git commit (server): a8a31ef
OS/Arch (server): linux/amd64
wait
Usage: docker wait CONTAINER [CONTAINER...]
Block until a container stops, then print its exit code.