Fixes #11953 Signed-off-by: Ankush Agarwal <ankushagarwal11@gmail.com>
14 KiB
page_title: Linking Containers Together page_description: Learn how to connect Docker containers together. page_keywords: Examples, Usage, user guide, links, linking, docker, documentation, examples, names, name, container naming, port, map, network port, network
Linking Containers Together
In the Using Docker section, you saw how you can connect to a service running inside a Docker container via a network port. But a port connection is only one way you can interact with services and applications running inside Docker containers. In this section, we'll briefly revisit connecting via a network port and then we'll introduce you to another method of access: container linking.
Connect using Network port mapping
In the Using Docker section, you created a container that ran a Python Flask application:
$ docker run -d -P training/webapp python app.py
Note: Containers have an internal network and an IP address (as we saw when we used the
docker inspect
command to show the container's IP address in the Using Docker section). Docker can have a variety of network configurations. You can see more information on Docker networking here.
When that container was created, the -P
flag was used to automatically map
any network port inside it to a random high port within an ephemeral port
range on your Docker host. Next, when docker ps
was run, you saw that port
5000 in the container was bound to port 49155 on the host.
$ docker ps nostalgic_morse
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
bc533791f3f5 training/webapp:latest python app.py 5 seconds ago Up 2 seconds 0.0.0.0:49155->5000/tcp nostalgic_morse
You also saw how you can bind a container's ports to a specific port using
the -p
flag. Here port 80 of the host is mapped to port 5000 of the
container:
$ docker run -d -p 80:5000 training/webapp python app.py
And you saw why this isn't such a great idea because it constrains you to only one container on that specific port.
There are also a few other ways you can configure the -p
flag. By
default the -p
flag will bind the specified port to all interfaces on
the host machine. But you can also specify a binding to a specific
interface, for example only to the localhost
.
$ docker run -d -p 127.0.0.1:80:5000 training/webapp python app.py
This would bind port 5000 inside the container to port 80 on the
localhost
or 127.0.0.1
interface on the host machine.
Or, to bind port 5000 of the container to a dynamic port but only on the
localhost
, you could use:
$ docker run -d -p 127.0.0.1::5000 training/webapp python app.py
You can also bind UDP ports by adding a trailing /udp
. For example:
$ docker run -d -p 127.0.0.1:80:5000/udp training/webapp python app.py
You also learned about the useful docker port
shortcut which showed us the
current port bindings. This is also useful for showing you specific port
configurations. For example, if you've bound the container port to the
localhost
on the host machine, then the docker port
output will reflect that.
$ docker port nostalgic_morse 5000
127.0.0.1:49155
Note: The
-p
flag can be used multiple times to configure multiple ports.
Connect with the linking system
Network port mappings are not the only way Docker containers can connect to one another. Docker also has a linking system that allows you to link multiple containers together and send connection information from one to another. When containers are linked, information about a source container can be sent to a recipient container. This allows the recipient to see selected data describing aspects of the source container.
The importance of naming
To establish links, Docker relies on the names of your containers.
You've already seen that each container you create has an automatically
created name; indeed you've become familiar with our old friend
nostalgic_morse
during this guide. You can also name containers
yourself. This naming provides two useful functions:
-
It can be useful to name containers that do specific functions in a way that makes it easier for you to remember them, for example naming a container containing a web application
web
. -
It provides Docker with a reference point that allows it to refer to other containers, for example, you can specify to link the container
web
to containerdb
.
You can name your container by using the --name
flag, for example:
$ docker run -d -P --name web training/webapp python app.py
This launches a new container and uses the --name
flag to
name the container web
. You can see the container's name using the
docker ps
command.
$ docker ps -l
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
aed84ee21bde training/webapp:latest python app.py 12 hours ago Up 2 seconds 0.0.0.0:49154->5000/tcp web
You can also use docker inspect
to return the container's name.
$ docker inspect -f "{{ .Name }}" aed84ee21bde
/web
Note: Container names have to be unique. That means you can only call one container
web
. If you want to re-use a container name you must delete the old container (withdocker rm
) before you can create a new container with the same name. As an alternative you can use the--rm
flag with thedocker run
command. This will delete the container immediately after it is stopped.
Communication across links
Links allow containers to discover each other and securely transfer information about one
container to another container. When you set up a link, you create a conduit between a
source container and a recipient container. The recipient can then access select data
about the source. To create a link, you use the --link
flag. First, create a new
container, this time one containing a database.
$ docker run -d --name db training/postgres
This creates a new container called db
from the training/postgres
image, which contains a PostgreSQL database.
Now, you need to delete the web
container you created previously so you can replace it
with a linked one:
$ docker rm -f web
Now, create a new web
container and link it with your db
container.
$ docker run -d -P --name web --link db:db training/webapp python app.py
This will link the new web
container with the db
container you created
earlier. The --link
flag takes the form:
--link <name or id>:alias
Where name
is the name of the container we're linking to and alias
is an
alias for the link name. You'll see how that alias gets used shortly.
Next, inspect your linked containers with docker inspect
:
$ docker inspect -f "{{ .HostConfig.Links }}" web
[/db:/web/db]
You can see that the web
container is now linked to the db
container
web/db
. Which allows it to access information about the db
container.
So what does linking the containers actually do? You've learned that a link allows a
source container to provide information about itself to a recipient container. In
our example, the recipient, web
, can access information about the source db
. To do
this, Docker creates a secure tunnel between the containers that doesn't need to
expose any ports externally on the container; you'll note when we started the
db
container we did not use either the -P
or -p
flags. That's a big benefit of
linking: we don't need to expose the source container, here the PostgreSQL database, to
the network.
Docker exposes connectivity information for the source container to the recipient container in two ways:
- Environment variables,
- Updating the
/etc/hosts
file.
Environment Variables
Docker creates several environment variables when you link containers. Docker
automatically creates environment variables in the target container based on
the --link
parameters. It will also expose all environment variables
originating from Docker from the source container. These include variables from:
- the
ENV
commands in the source container's Dockerfile - the
-e
,--env
and--env-file
options on thedocker run
command when the source container is started
These environment variables enable programmatic discovery from within the target container of information related to the source container.
Warning
: It is important to understand that all environment variables originating from Docker within a container are made available to any container that links to it. This could have serious security implications if sensitive data is stored in them.
Docker sets an <alias>_NAME
environment variable for each target container
listed in the --link
parameter. For example, if a new container called
web
is linked to a database container called db
via --link db:webdb
,
then Docker creates a WEBDB_NAME=/web/webdb
variable in the web
container.
Docker also defines a set of environment variables for each port exposed by the source container. Each variable has a unique prefix in the form:
<name>_PORT_<port>_<protocol>
The components in this prefix are:
- the alias
<name>
specified in the--link
parameter (for example,webdb
) - the
<port>
number exposed - a
<protocol>
which is either TCP or UDP
Docker uses this prefix format to define three distinct environment variables:
- The
prefix_ADDR
variable contains the IP Address from the URL, for exampleWEBDB_PORT_8080_TCP_ADDR=172.17.0.82
. - The
prefix_PORT
variable contains just the port number from the URL for exampleWEBDB_PORT_8080_TCP_PORT=8080
. - The
prefix_PROTO
variable contains just the protocol from the URL for exampleWEBDB_PORT_8080_TCP_PROTO=tcp
.
If the container exposes multiple ports, an environment variable set is defined for each one. This means, for example, if a container exposes 4 ports that Docker creates 12 environment variables, 3 for each port.
Additionally, Docker creates an environment variable called <alias>_PORT
.
This variable contains the URL of the source container's first exposed port.
The 'first' port is defined as the exposed port with the lowest number.
For example, consider the WEBDB_PORT=tcp://172.17.0.82:8080
variable. If
that port is used for both tcp and udp, then the tcp one is specified.
Finally, Docker also exposes each Docker originated environment variable
from the source container as an environment variable in the target. For each
variable Docker creates an <alias>_ENV_<name>
variable in the target
container. The variable's value is set to the value Docker used when it
started the source container.
Returning back to our database example, you can run the env
command to list the specified container's environment variables.
$ docker run --rm --name web2 --link db:db training/webapp env
. . .
DB_NAME=/web2/db
DB_PORT=tcp://172.17.0.5:5432
DB_PORT_5432_TCP=tcp://172.17.0.5:5432
DB_PORT_5432_TCP_PROTO=tcp
DB_PORT_5432_TCP_PORT=5432
DB_PORT_5432_TCP_ADDR=172.17.0.5
. . .
You can see that Docker has created a series of environment variables with
useful information about the source db
container. Each variable is prefixed
with
DB_
, which is populated from the alias
you specified above. If the alias
were db1
, the variables would be prefixed with DB1_
. You can use these
environment variables to configure your applications to connect to the database
on the db
container. The connection will be secure and private; only the
linked web
container will be able to talk to the db
container.
Important notes on Docker environment variables
Unlike host entries in the /etc/hosts
file,
IP addresses stored in the environment variables are not automatically updated
if the source container is restarted. We recommend using the host entries in
/etc/hosts
to resolve the IP address of linked containers.
These environment variables are only set for the first process in the
container. Some daemons, such as sshd
, will scrub them when spawning shells
for connection.
Updating the /etc/hosts
file
In addition to the environment variables, Docker adds a host entry for the
source container to the /etc/hosts
file. Here's an entry for the web
container:
$ docker run -t -i --rm --link db:webdb training/webapp /bin/bash
root@aed84ee21bde:/opt/webapp# cat /etc/hosts
172.17.0.7 aed84ee21bde
. . .
172.17.0.5 webdb 6e5cdeb2d300 db
You can see two relevant host entries. The first is an entry for the web
container that uses the Container ID as a host name. The second entry uses the
link alias to reference the IP address of the db
container. In addition to
the alias you provide, the linked container's name--if unique from the alias
provided to the --link
parameter--and the linked container's hostname will
also be added in /etc/hosts
for the linked container's IP address. You can ping
that host now via any of these entries:
root@aed84ee21bde:/opt/webapp# apt-get install -yqq inetutils-ping
root@aed84ee21bde:/opt/webapp# ping webdb
PING webdb (172.17.0.5): 48 data bytes
56 bytes from 172.17.0.5: icmp_seq=0 ttl=64 time=0.267 ms
56 bytes from 172.17.0.5: icmp_seq=1 ttl=64 time=0.250 ms
56 bytes from 172.17.0.5: icmp_seq=2 ttl=64 time=0.256 ms
Note: In the example, you'll note you had to install
ping
because it was not included in the container initially.
Here, you used the ping
command to ping the db
container using its host entry,
which resolves to 172.17.0.5
. You can use this host entry to configure an application
to make use of your db
container.
Note: You can link multiple recipient containers to a single source. For example, you could have multiple (differently named) web containers attached to your
db
container.
If you restart the source container, the linked containers /etc/hosts
files
will be automatically updated with the source container's new IP address,
allowing linked communication to continue.
$ docker restart db
db
$ docker run -t -i --rm --link db:db training/webapp /bin/bash
root@aed84ee21bde:/opt/webapp# cat /etc/hosts
172.17.0.7 aed84ee21bde
. . .
172.17.0.9 db
Next step
Now that you know how to link Docker containers together, the next step is learning how to manage data, volumes and mounts inside your containers.
Go to Managing Data in Containers.