* More docs/systemd refinements * Section renamed Alternative Forking Configuration with explanation given for when to use this. * capistrano3-puma in sub-section with consolidated dry-run shell commands * Section Service Configuration contrasts and references Forking section * Streamline config samples and highlight using ini format * More intro to docs/systemd, alt forking section * Add docs/systemd link to tools/jungle/README, for parity * Add systemd, alt-forking Always and WantedBy * Add another link to systemd from README, capistrano section * minor typo
8.3 KiB
systemd
systemd is a commonly available init system (PID 1) on many Linux distributions. It offers process monitoring (including automatic restarts) and other useful features for running Puma in production.
Service Configuration
Below is a sample puma.service configuration file for systemd, which can be copied or symlinked to /etc/systemd/system/puma.service, or if desired, using an application or instance specific name.
Note that this uses the systemd preferred "simple" type where the start command remains running in the foreground (does not fork and exit). See also, the Alternative Forking Configuration below.
[Unit]
Description=Puma HTTP Server
After=network.target
# Uncomment for socket activation (see below)
# Requires=puma.socket
[Service]
# Foreground process (do not use --daemon in ExecStart or config.rb)
Type=simple
# Preferably configure a non-privileged user
# User=
# The path to the puma application root
# Also replace the "<WD>" place holders below with this path.
WorkingDirectory=
# Helpful for debugging socket activation, etc.
# Environment=PUMA_DEBUG=1
# The command to start Puma. This variant uses a binstub generated via
# `bundle binstubs puma --path ./sbin` in the WorkingDirectory
# (replace "<WD>" below)
ExecStart=<WD>/sbin/puma -b tcp://0.0.0.0:9292 -b ssl://0.0.0.0:9293?key=key.pem&cert=cert.pem
# Variant: Use config file with `bind` directives instead:
# ExecStart=<WD>/sbin/puma -C config.rb
# Variant: Use `bundle exec --keep-file-descriptors puma` instead of binstub
Restart=always
[Install]
WantedBy=multi-user.target
See systemd.exec for additional details.
Socket Activation
systemd and puma also support socket activation, where systemd opens
the listening socket(s) in advance and provides them to the puma
master process on startup. Among other advantages, this keeps
listening sockets open across puma restarts and achieves graceful
restarts, including when upgraded puma, and is compatible with both
clustered mode and application preload. To use socket activation,
configure one or more ListenStream
sockets in a companion *.socket
systemd config file. Here is a sample puma.socket, matching the ports
used in the above puma.service:
[Unit]
Description=Puma HTTP Server Accept Sockets
[Socket]
ListenStream=0.0.0.0:9292
ListenStream=0.0.0.0:9293
# AF_UNIX domain socket
# SocketUser, SocketGroup, etc. may be needed for Unix domain sockets
# ListenStream=/run/puma.sock
# Socket options matching Puma defaults
NoDelay=true
ReusePort=true
Backlog=1024
[Install]
WantedBy=sockets.target
See systemd.socket for additional configuration details.
Note that the above configurations will work with Puma in either single process or cluster mode.
Usage
Without socket activation, use systemctl
as root (e.g. via sudo
) as
with other system services:
# After installing or making changes to puma.service
systemctl daemon-reload
# Enable so it starts on boot
systemctl enable puma.service
# Initial start up.
systemctl start puma.service
# Check status
systemctl status puma.service
# A normal restart. Warning: listeners sockets will be closed
# while a new puma process initializes.
systemctl restart puma.service
With socket activation, several but not all of these commands should be run for both socket and service:
# After installing or making changes to either puma.socket or
# puma.service.
systemctl daemon-reload
# Enable both socket and service so they start on boot. Alternatively
# you could leave puma.service disabled and systemd will start it on
# first use (with startup lag on first request)
systemctl enable puma.socket puma.service
# Initial start up. The Requires directive (see above) ensures the
# socket is started before the service.
systemctl start puma.socket puma.service
# Check status of both socket and service.
systemctl status puma.socket puma.service
# A "hot" restart, with systemd keeping puma.socket listening and
# providing to the new puma (master) instance.
systemctl restart puma.service
# A normal restart, needed to handle changes to
# puma.socket, such as changing the ListenStream ports. Note
# daemon-reload (above) should be run first.
systemctl restart puma.socket puma.service
Here is sample output from systemctl status
with both service and
socket running:
● puma.socket - Puma HTTP Server Accept Sockets
Loaded: loaded (/etc/systemd/system/puma.socket; enabled; vendor preset: enabled)
Active: active (running) since Thu 2016-04-07 08:40:19 PDT; 1h 2min ago
Listen: 0.0.0.0:9233 (Stream)
0.0.0.0:9234 (Stream)
Apr 07 08:40:19 hx systemd[874]: Listening on Puma HTTP Server Accept Sockets.
● puma.service - Puma HTTP Server
Loaded: loaded (/etc/systemd/system/puma.service; enabled; vendor preset: enabled)
Active: active (running) since Thu 2016-04-07 08:40:19 PDT; 1h 2min ago
Main PID: 28320 (ruby)
CGroup: /system.slice/puma.service
├─28320 puma 3.3.0 (tcp://0.0.0.0:9233,ssl://0.0.0.0:9234?key=key.pem&cert=cert.pem) [app]
├─28323 puma: cluster worker 0: 28320 [app]
└─28327 puma: cluster worker 1: 28320 [app]
Apr 07 08:40:19 hx puma[28320]: Puma starting in cluster mode...
Apr 07 08:40:19 hx puma[28320]: * Version 3.3.0 (ruby 2.2.4-p230), codename: Jovial Platypus
Apr 07 08:40:19 hx puma[28320]: * Min threads: 0, max threads: 16
Apr 07 08:40:19 hx puma[28320]: * Environment: production
Apr 07 08:40:19 hx puma[28320]: * Process workers: 2
Apr 07 08:40:19 hx puma[28320]: * Phased restart available
Apr 07 08:40:19 hx puma[28320]: * Activated tcp://0.0.0.0:9233
Apr 07 08:40:19 hx puma[28320]: * Activated ssl://0.0.0.0:9234?key=key.pem&cert=cert.pem
Apr 07 08:40:19 hx puma[28320]: Use Ctrl-C to stop
Alternative Forking Configuration
Other systems/tools might expect or need puma to be run as a
"traditional" forking server, for example so that the pumactl
command can be used directly and outside of systemd for
stop/start/restart. This use case is incompatible with systemd socket
activation, so it should not be configured. Below is an alternative
puma.service config sample, using Type=forking
and the --daemon
flag in ExecStart
. Here systemd is playing a role more equivalent to
SysV init.d, where it is responsible for starting Puma on boot
(multi-user.target) and stopping it on shutdown, but is not performing
continuous restarts. Therefore running Puma in cluster mode, where the
master can restart workers, is highly recommended. See the systemd
Restart directive for details.
[Unit]
Description=Puma HTTP Forking Server
After=network.target
[Service]
# Background process configuration (use with --daemon in ExecStart)
Type=forking
# Preferably configure a non-privileged user
# User=
# The command to start Puma
# Replace "<WD>" below, with the application root or working directory
ExecStart=bundle exec puma -C <WD>/shared/puma.rb --daemon
# The command to stop Puma
# Replace "<WD>" below
ExecStop=bundle exec pumactl -S <WD>/shared/tmp/pids/puma.state stop
# Path to PID file so that systemd knows which is the master process
PIDFile=<WD>/shared/tmp/pids/puma.pid
# Should systemd restart puma?
# Use "no" (the default) to ensure no interference when using
# stop/start/restart via `pumactl`. The "on-failure" setting might
# work better for this purpose, but you must test it.
# Use "always" if only `systemctl` is used for start/stop/restart, and
# reconsider if you actually need the forking config.
Restart=no
[Install]
WantedBy=multi-user.target
capistrano3-puma
By default,
capistrano3-puma uses
pumactl
for deployment restarts, outside of systemd. To learn the
exact commands that this tool would use for ExecStart
and
ExecStop
, use the following cap
commands in dry-run mode, and
update from the above forking service configuration accordingly. Note
also that the configured User
should likely be the same as the
capistrano3-puma :puma_user
option.
stage=production # or different stage, as needed
cap $stage puma:start --dry-run
cap $stage puma:stop --dry-run