1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/enum.c

2732 lines
69 KiB
C
Raw Normal View History

/**********************************************************************
enum.c -
$Author$
created at: Fri Oct 1 15:15:19 JST 1993
* encoding.c: provide basic features for M17N. * parse.y: encoding aware parsing. * parse.y (pragma_encoding): encoding specification pragma. * parse.y (rb_intern3): encoding specified symbols. * string.c (rb_str_length): length based on characters. for older behavior, bytesize method added. * string.c (rb_str_index_m): index based on characters. rindex as well. * string.c (succ_char): encoding aware succeeding string. * string.c (rb_str_reverse): reverse based on characters. * string.c (rb_str_inspect): encoding aware string description. * string.c (rb_str_upcase_bang): encoding aware case conversion. downcase, capitalize, swapcase as well. * string.c (rb_str_tr_bang): tr based on characters. delete, squeeze, tr_s, count as well. * string.c (rb_str_split_m): split based on characters. * string.c (rb_str_each_line): encoding aware each_line. * string.c (rb_str_each_char): added. iteration based on characters. * string.c (rb_str_strip_bang): encoding aware whitespace stripping. lstrip, rstrip as well. * string.c (rb_str_justify): encoding aware justifying (ljust, rjust, center). * string.c (str_encoding): get encoding attribute from a string. * re.c (rb_reg_initialize): encoding aware regular expression * sprintf.c (rb_str_format): formatting (i.e. length count) based on characters. * io.c (rb_io_getc): getc to return one-character string. for older behavior, getbyte method added. * ext/stringio/stringio.c (strio_getc): ditto. * io.c (rb_io_ungetc): allow pushing arbitrary string at the current reading point. * ext/stringio/stringio.c (strio_ungetc): ditto. * ext/strscan/strscan.c: encoding support. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@13261 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2007-08-24 23:29:39 -04:00
Copyright (C) 1993-2007 Yukihiro Matsumoto
**********************************************************************/
#include "ruby/ruby.h"
#include "ruby/util.h"
#include "node.h"
#include "id.h"
#include "internal.h"
#define STATIC_ASSERT(name, expr) typedef int static_assert_##name##_check[1 - 2*!(expr)]
VALUE rb_mEnumerable;
static ID id_next;
#define id_each idEach
#define id_eqq idEqq
#define id_cmp idCmp
#define id_lshift idLTLT
VALUE
rb_enum_values_pack(int argc, VALUE *argv)
{
if (argc == 0) return Qnil;
if (argc == 1) return argv[0];
return rb_ary_new4(argc, argv);
}
#define ENUM_WANT_SVALUE() do { \
i = rb_enum_values_pack(argc, argv); \
} while (0)
#define enum_yield rb_yield_values2
static VALUE
grep_i(VALUE i, VALUE args, int argc, VALUE *argv)
{
NODE *memo = RNODE(args);
ENUM_WANT_SVALUE();
if (RTEST(rb_funcall(memo->u1.value, id_eqq, 1, i))) {
rb_ary_push(memo->u2.value, i);
}
return Qnil;
}
static VALUE
grep_iter_i(VALUE i, VALUE args, int argc, VALUE *argv)
{
NODE *memo = RNODE(args);
ENUM_WANT_SVALUE();
if (RTEST(rb_funcall(memo->u1.value, id_eqq, 1, i))) {
rb_ary_push(memo->u2.value, rb_yield(i));
}
return Qnil;
}
/*
* call-seq:
* enum.grep(pattern) -> array
* enum.grep(pattern) { |obj| block } -> array
*
* Returns an array of every element in <i>enum</i> for which
* <code>Pattern === element</code>. If the optional <em>block</em> is
* supplied, each matching element is passed to it, and the block's
* result is stored in the output array.
*
* (1..100).grep 38..44 #=> [38, 39, 40, 41, 42, 43, 44]
* c = IO.constants
* c.grep(/SEEK/) #=> [:SEEK_SET, :SEEK_CUR, :SEEK_END]
* res = c.grep(/SEEK/) { |v| IO.const_get(v) }
* res #=> [0, 1, 2]
*
*/
static VALUE
enum_grep(VALUE obj, VALUE pat)
{
VALUE ary = rb_ary_new();
NODE *memo = NEW_MEMO(pat, ary, 0);
rb_block_call(obj, id_each, 0, 0, rb_block_given_p() ? grep_iter_i : grep_i, (VALUE)memo);
return ary;
}
static VALUE
count_i(VALUE i, VALUE memop, int argc, VALUE *argv)
{
NODE *memo = RNODE(memop);
ENUM_WANT_SVALUE();
if (rb_equal(i, memo->u1.value)) {
memo->u3.cnt++;
}
return Qnil;
}
static VALUE
count_iter_i(VALUE i, VALUE memop, int argc, VALUE *argv)
{
NODE *memo = RNODE(memop);
if (RTEST(enum_yield(argc, argv))) {
memo->u3.cnt++;
}
return Qnil;
}
static VALUE
count_all_i(VALUE i, VALUE memop, int argc, VALUE *argv)
{
NODE *memo = RNODE(memop);
memo->u3.cnt++;
return Qnil;
}
/*
* call-seq:
* enum.count -> int
* enum.count(item) -> int
* enum.count { |obj| block } -> int
*
* Returns the number of items in <i>enum</i> if it responds to a #size call,
* otherwise the items are counted through enumeration. If an argument is
* given the number of items in <i>enum</i> that are equal to <i>item</i> are
* counted. If a block is given, it counts the number of elements yielding a
* true value.
*
* ary = [1, 2, 4, 2]
* ary.count #=> 4
* ary.count(2) #=> 2
* ary.count{ |x| x%2==0 } #=> 3
*
*/
static VALUE
enum_count(int argc, VALUE *argv, VALUE obj)
{
VALUE item = Qnil;
NODE *memo;
rb_block_call_func *func;
if (argc == 0) {
if (rb_block_given_p()) {
func = count_iter_i;
}
else {
func = count_all_i;
}
}
else {
rb_scan_args(argc, argv, "1", &item);
if (rb_block_given_p()) {
rb_warn("given block not used");
}
func = count_i;
}
memo = NEW_MEMO(item, 0, 0);
rb_block_call(obj, id_each, 0, 0, func, (VALUE)memo);
return INT2NUM(memo->u3.cnt);
}
static VALUE
find_i(VALUE i, VALUE memop, int argc, VALUE *argv)
{
ENUM_WANT_SVALUE();
if (RTEST(rb_yield(i))) {
NODE *memo = RNODE(memop);
memo->u1.value = i;
memo->u3.cnt = 1;
rb_iter_break();
}
return Qnil;
}
/*
* call-seq:
* enum.detect(ifnone = nil) { |obj| block } -> obj or nil
* enum.find(ifnone = nil) { |obj| block } -> obj or nil
* enum.detect(ifnone = nil) -> an_enumerator
* enum.find(ifnone = nil) -> an_enumerator
*
* Passes each entry in <i>enum</i> to <em>block</em>. Returns the
* first for which <em>block</em> is not false. If no
* object matches, calls <i>ifnone</i> and returns its result when it
* is specified, or returns <code>nil</code> otherwise.
*
* If no block is given, an enumerator is returned instead.
*
* (1..10).detect { |i| i % 5 == 0 and i % 7 == 0 } #=> nil
* (1..100).detect { |i| i % 5 == 0 and i % 7 == 0 } #=> 35
*
*/
static VALUE
enum_find(int argc, VALUE *argv, VALUE obj)
{
NODE *memo;
VALUE if_none;
rb_scan_args(argc, argv, "01", &if_none);
RETURN_ENUMERATOR(obj, argc, argv);
memo = NEW_MEMO(Qundef, 0, 0);
rb_block_call(obj, id_each, 0, 0, find_i, (VALUE)memo);
if (memo->u3.cnt) {
return memo->u1.value;
}
if (!NIL_P(if_none)) {
return rb_funcall(if_none, rb_intern("call"), 0, 0);
}
return Qnil;
}
static VALUE
find_index_i(VALUE i, VALUE memop, int argc, VALUE *argv)
{
NODE *memo = RNODE(memop);
ENUM_WANT_SVALUE();
if (rb_equal(i, memo->u2.value)) {
memo->u1.value = UINT2NUM(memo->u3.cnt);
rb_iter_break();
}
memo->u3.cnt++;
return Qnil;
}
static VALUE
find_index_iter_i(VALUE i, VALUE memop, int argc, VALUE *argv)
{
NODE *memo = RNODE(memop);
if (RTEST(enum_yield(argc, argv))) {
memo->u1.value = UINT2NUM(memo->u3.cnt);
rb_iter_break();
}
memo->u3.cnt++;
return Qnil;
}
/*
* call-seq:
* enum.find_index(value) -> int or nil
* enum.find_index { |obj| block } -> int or nil
* enum.find_index -> an_enumerator
*
* Compares each entry in <i>enum</i> with <em>value</em> or passes
* to <em>block</em>. Returns the index for the first for which the
* evaluated value is non-false. If no object matches, returns
* <code>nil</code>
*
* If neither block nor argument is given, an enumerator is returned instead.
*
* (1..10).find_index { |i| i % 5 == 0 and i % 7 == 0 } #=> nil
* (1..100).find_index { |i| i % 5 == 0 and i % 7 == 0 } #=> 34
* (1..100).find_index(50) #=> 49
*
*/
static VALUE
enum_find_index(int argc, VALUE *argv, VALUE obj)
{
NODE *memo; /* [return value, current index, ] */
VALUE condition_value = Qnil;
rb_block_call_func *func;
if (argc == 0) {
RETURN_ENUMERATOR(obj, 0, 0);
func = find_index_iter_i;
}
else {
rb_scan_args(argc, argv, "1", &condition_value);
if (rb_block_given_p()) {
rb_warn("given block not used");
}
func = find_index_i;
}
memo = NEW_MEMO(Qnil, condition_value, 0);
rb_block_call(obj, id_each, 0, 0, func, (VALUE)memo);
return memo->u1.value;
}
static VALUE
find_all_i(VALUE i, VALUE ary, int argc, VALUE *argv)
{
ENUM_WANT_SVALUE();
if (RTEST(rb_yield(i))) {
rb_ary_push(ary, i);
}
return Qnil;
}
/*
* call-seq:
* enum.find_all { |obj| block } -> array
* enum.select { |obj| block } -> array
* enum.find_all -> an_enumerator
* enum.select -> an_enumerator
*
* Returns an array containing all elements of <i>enum</i> for which
* <em>block</em> is not <code>false</code> (see also
* <code>Enumerable#reject</code>).
*
* If no block is given, an enumerator is returned instead.
*
*
* (1..10).find_all { |i| i % 3 == 0 } #=> [3, 6, 9]
*
*/
static VALUE
enum_find_all(VALUE obj)
{
VALUE ary;
RETURN_ENUMERATOR(obj, 0, 0);
ary = rb_ary_new();
rb_block_call(obj, id_each, 0, 0, find_all_i, ary);
return ary;
}
static VALUE
reject_i(VALUE i, VALUE ary, int argc, VALUE *argv)
{
ENUM_WANT_SVALUE();
if (!RTEST(rb_yield(i))) {
rb_ary_push(ary, i);
}
return Qnil;
}
/*
* call-seq:
* enum.reject { |obj| block } -> array
* enum.reject -> an_enumerator
*
* Returns an array for all elements of <i>enum</i> for which
* <em>block</em> is false (see also <code>Enumerable#find_all</code>).
*
* If no block is given, an enumerator is returned instead.
*
* (1..10).reject { |i| i % 3 == 0 } #=> [1, 2, 4, 5, 7, 8, 10]
*
*/
static VALUE
enum_reject(VALUE obj)
{
VALUE ary;
RETURN_ENUMERATOR(obj, 0, 0);
ary = rb_ary_new();
rb_block_call(obj, id_each, 0, 0, reject_i, ary);
return ary;
}
static VALUE
collect_i(VALUE i, VALUE ary, int argc, VALUE *argv)
{
rb_ary_push(ary, enum_yield(argc, argv));
return Qnil;
}
static VALUE
collect_all(VALUE i, VALUE ary, int argc, VALUE *argv)
{
rb_thread_check_ints();
rb_ary_push(ary, rb_enum_values_pack(argc, argv));
return Qnil;
}
/*
* call-seq:
* enum.collect { |obj| block } -> array
* enum.map { |obj| block } -> array
* enum.collect -> an_enumerator
* enum.map -> an_enumerator
*
* Returns a new array with the results of running <em>block</em> once
* for every element in <i>enum</i>.
*
* If no block is given, an enumerator is returned instead.
*
* (1..4).collect { |i| i*i } #=> [1, 4, 9, 16]
* (1..4).collect { "cat" } #=> ["cat", "cat", "cat", "cat"]
*
*/
static VALUE
enum_collect(VALUE obj)
{
VALUE ary;
RETURN_ENUMERATOR(obj, 0, 0);
ary = rb_ary_new();
rb_block_call(obj, id_each, 0, 0, collect_i, ary);
return ary;
}
static VALUE
flat_map_i(VALUE i, VALUE ary, int argc, VALUE *argv)
{
VALUE tmp;
i = enum_yield(argc, argv);
tmp = rb_check_array_type(i);
if (NIL_P(tmp)) {
rb_ary_push(ary, i);
}
else {
rb_ary_concat(ary, tmp);
}
return Qnil;
}
/*
* call-seq:
* enum.flat_map { |obj| block } -> array
* enum.collect_concat { |obj| block } -> array
* enum.flat_map -> an_enumerator
* enum.collect_concat -> an_enumerator
*
* Returns a new array with the concatenated results of running
* <em>block</em> once for every element in <i>enum</i>.
*
* If no block is given, an enumerator is returned instead.
*
* [1, 2, 3, 4].flat_map { |e| [e, -e] } #=> [1, -1, 2, -2, 3, -3, 4, -4]
* [[1, 2], [3, 4]].flat_map { |e| e + [100] } #=> [1, 2, 100, 3, 4, 100]
*
*/
static VALUE
enum_flat_map(VALUE obj)
{
VALUE ary;
RETURN_ENUMERATOR(obj, 0, 0);
ary = rb_ary_new();
rb_block_call(obj, id_each, 0, 0, flat_map_i, ary);
return ary;
}
/*
* call-seq:
* enum.to_a -> array
* enum.entries -> array
*
* Returns an array containing the items in <i>enum</i>.
*
* (1..7).to_a #=> [1, 2, 3, 4, 5, 6, 7]
* { 'a'=>1, 'b'=>2, 'c'=>3 }.to_a #=> [["a", 1], ["b", 2], ["c", 3]]
*/
static VALUE
enum_to_a(int argc, VALUE *argv, VALUE obj)
{
VALUE ary = rb_ary_new();
rb_block_call(obj, id_each, argc, argv, collect_all, ary);
OBJ_INFECT(ary, obj);
return ary;
}
static VALUE
inject_i(VALUE i, VALUE p, int argc, VALUE *argv)
{
NODE *memo = RNODE(p);
ENUM_WANT_SVALUE();
if (memo->u2.argc == 0) {
memo->u2.argc = 1;
memo->u1.value = i;
}
else {
memo->u1.value = rb_yield_values(2, memo->u1.value, i);
}
return Qnil;
}
static VALUE
inject_op_i(VALUE i, VALUE p, int argc, VALUE *argv)
{
NODE *memo = RNODE(p);
ENUM_WANT_SVALUE();
if (memo->u2.argc == 0) {
memo->u2.argc = 1;
memo->u1.value = i;
}
else {
memo->u1.value = rb_funcall(memo->u1.value, memo->u3.id, 1, i);
}
return Qnil;
}
/*
* call-seq:
* enum.inject(initial, sym) -> obj
* enum.inject(sym) -> obj
* enum.inject(initial) { |memo, obj| block } -> obj
* enum.inject { |memo, obj| block } -> obj
* enum.reduce(initial, sym) -> obj
* enum.reduce(sym) -> obj
* enum.reduce(initial) { |memo, obj| block } -> obj
* enum.reduce { |memo, obj| block } -> obj
*
* Combines all elements of <i>enum</i> by applying a binary
* operation, specified by a block or a symbol that names a
* method or operator.
*
* If you specify a block, then for each element in <i>enum</i>
* the block is passed an accumulator value (<i>memo</i>) and the element.
* If you specify a symbol instead, then each element in the collection
* will be passed to the named method of <i>memo</i>.
* In either case, the result becomes the new value for <i>memo</i>.
* At the end of the iteration, the final value of <i>memo</i> is the
* return value for the method.
*
* If you do not explicitly specify an <i>initial</i> value for <i>memo</i>,
* then the first element of collection is used as the initial value
* of <i>memo</i>.
*
*
* # Sum some numbers
* (5..10).reduce(:+) #=> 45
* # Same using a block and inject
* (5..10).inject { |sum, n| sum + n } #=> 45
* # Multiply some numbers
* (5..10).reduce(1, :*) #=> 151200
* # Same using a block
* (5..10).inject(1) { |product, n| product * n } #=> 151200
* # find the longest word
* longest = %w{ cat sheep bear }.inject do |memo, word|
* memo.length > word.length ? memo : word
* end
* longest #=> "sheep"
*
*/
static VALUE
enum_inject(int argc, VALUE *argv, VALUE obj)
{
NODE *memo;
VALUE init, op;
VALUE (*iter)(VALUE, VALUE, int, VALUE*) = inject_i;
switch (rb_scan_args(argc, argv, "02", &init, &op)) {
case 0:
break;
case 1:
if (rb_block_given_p()) {
break;
}
op = (VALUE)rb_to_id(init);
argc = 0;
init = Qnil;
iter = inject_op_i;
break;
case 2:
if (rb_block_given_p()) {
rb_warning("given block not used");
}
op = (VALUE)rb_to_id(op);
iter = inject_op_i;
break;
}
memo = NEW_MEMO(init, argc, op);
rb_block_call(obj, id_each, 0, 0, iter, (VALUE)memo);
return memo->u1.value;
}
static VALUE
partition_i(VALUE i, VALUE arys, int argc, VALUE *argv)
{
NODE *memo = RNODE(arys);
VALUE ary;
ENUM_WANT_SVALUE();
if (RTEST(rb_yield(i))) {
ary = memo->u1.value;
}
else {
ary = memo->u2.value;
}
rb_ary_push(ary, i);
return Qnil;
}
/*
* call-seq:
* enum.partition { |obj| block } -> [ true_array, false_array ]
* enum.partition -> an_enumerator
*
* Returns two arrays, the first containing the elements of
* <i>enum</i> for which the block evaluates to true, the second
* containing the rest.
*
* If no block is given, an enumerator is returned instead.
*
* (1..6).partition { |v| v.even? } #=> [[2, 4, 6], [1, 3, 5]]
*
*/
static VALUE
enum_partition(VALUE obj)
{
NODE *memo;
RETURN_ENUMERATOR(obj, 0, 0);
memo = NEW_MEMO(rb_ary_new(), rb_ary_new(), 0);
rb_block_call(obj, id_each, 0, 0, partition_i, (VALUE)memo);
return rb_assoc_new(memo->u1.value, memo->u2.value);
}
static VALUE
group_by_i(VALUE i, VALUE hash, int argc, VALUE *argv)
{
VALUE group;
VALUE values;
ENUM_WANT_SVALUE();
group = rb_yield(i);
values = rb_hash_aref(hash, group);
if (!RB_TYPE_P(values, T_ARRAY)) {
values = rb_ary_new3(1, i);
rb_hash_aset(hash, group, values);
}
else {
rb_ary_push(values, i);
}
return Qnil;
}
/*
* call-seq:
* enum.group_by { |obj| block } -> a_hash
* enum.group_by -> an_enumerator
*
* Groups the collection by result of the block. Returns a hash where the
* keys are the evaluated result from the block and the values are
* arrays of elements in the collection that correspond to the key.
*
* If no block is given an enumerator is returned.
*
* (1..6).group_by { |i| i%3 } #=> {0=>[3, 6], 1=>[1, 4], 2=>[2, 5]}
*
*/
static VALUE
enum_group_by(VALUE obj)
{
VALUE hash;
RETURN_ENUMERATOR(obj, 0, 0);
hash = rb_hash_new();
rb_block_call(obj, id_each, 0, 0, group_by_i, hash);
OBJ_INFECT(hash, obj);
return hash;
}
static VALUE
first_i(VALUE i, VALUE params, int argc, VALUE *argv)
{
NODE *memo = RNODE(params);
ENUM_WANT_SVALUE();
memo->u1.value = i;
rb_iter_break();
return Qnil; /* not reached */
}
static VALUE enum_take(VALUE obj, VALUE n);
/*
* call-seq:
* enum.first -> obj or nil
* enum.first(n) -> an_array
*
* Returns the first element, or the first +n+ elements, of the enumerable.
* If the enumerable is empty, the first form returns <code>nil</code>, and the
* second form returns an empty array.
*
* %w[foo bar baz].first #=> "foo"
* %w[foo bar baz].first(2) #=> ["foo", "bar"]
* %w[foo bar baz].first(10) #=> ["foo", "bar", "baz"]
* [].first #=> nil
*
*/
static VALUE
enum_first(int argc, VALUE *argv, VALUE obj)
{
NODE *memo;
rb_check_arity(argc, 0, 1);
if (argc > 0) {
return enum_take(obj, argv[0]);
}
else {
memo = NEW_MEMO(Qnil, 0, 0);
rb_block_call(obj, id_each, 0, 0, first_i, (VALUE)memo);
return memo->u1.value;
}
}
/*
* call-seq:
* enum.sort -> array
* enum.sort { |a, b| block } -> array
*
* Returns an array containing the items in <i>enum</i> sorted,
* either according to their own <code><=></code> method, or by using
* the results of the supplied block. The block should return -1, 0, or
* +1 depending on the comparison between <i>a</i> and <i>b</i>. As of
* Ruby 1.8, the method <code>Enumerable#sort_by</code> implements a
* built-in Schwartzian Transform, useful when key computation or
* comparison is expensive.
*
* %w(rhea kea flea).sort #=> ["flea", "kea", "rhea"]
* (1..10).sort { |a, b| b <=> a } #=> [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
*/
static VALUE
enum_sort(VALUE obj)
{
return rb_ary_sort(enum_to_a(0, 0, obj));
}
#define SORT_BY_BUFSIZE 16
struct sort_by_data {
VALUE ary;
VALUE buf;
long n;
};
static VALUE
sort_by_i(VALUE i, VALUE _data, int argc, VALUE *argv)
{
struct sort_by_data *data = (struct sort_by_data *)&RNODE(_data)->u1;
VALUE ary = data->ary;
VALUE v;
ENUM_WANT_SVALUE();
v = rb_yield(i);
if (RBASIC(ary)->klass) {
rb_raise(rb_eRuntimeError, "sort_by reentered");
}
if (RARRAY_LEN(data->buf) != SORT_BY_BUFSIZE*2) {
rb_raise(rb_eRuntimeError, "sort_by reentered");
}
RARRAY_PTR(data->buf)[data->n*2] = v;
RARRAY_PTR(data->buf)[data->n*2+1] = i;
data->n++;
if (data->n == SORT_BY_BUFSIZE) {
rb_ary_concat(ary, data->buf);
data->n = 0;
}
return Qnil;
}
static int
sort_by_cmp(const void *ap, const void *bp, void *data)
{
VALUE a;
VALUE b;
VALUE ary = (VALUE)data;
* array.c (rb_ary_modify): should copy the internal buffer if the modifying buffer is shared. * array.c (ary_make_shared): make an internal buffer of an array to be shared. * array.c (rb_ary_shift): avoid sliding an internal buffer by using shared buffer. * array.c (rb_ary_subseq): avoid copying the buffer. * parse.y (gettable): should freeze __LINE__ string. * io.c (rb_io_puts): old behavoir restored. rationale: a) if you want to call to_s for arrays, you can just call print a, "\n". b) to_s wastes memory if array (and sum of its contents) is huge. c) now any object that has to_ary is treated as an array, using rb_check_convert_type(). * hash.c (rb_hash_initialize): now accepts a block to calculate the default value. [new] * hash.c (rb_hash_aref): call "default" method to get the value corrensponding to the non existing key. * hash.c (rb_hash_default): get the default value based on the block given to 'new'. Now it takes an optinal "key" argument. "default" became the method to get the value for non existing key. Users may override "default" method to change the hash behavior. * hash.c (rb_hash_set_default): clear the flag if a block is given to 'new' * object.c (Init_Object): undef Data.allocate, left Data.new. * ext/curses/curses.c (window_scrollok): use RTEST(). * ext/curses/curses.c (window_idlok): ditto. * ext/curses/curses.c (window_keypad): ditto. * ext/curses/curses.c (window_idlok): idlok() may return void on some platforms; so don't use return value. * ext/curses/curses.c (window_scrollok): ditto for consistency. * ext/curses/curses.c: replace FIX2INT() by typechecking NUM2INT(). * parse.y (str_extend): should not process immature #$x and #@x interpolation, e.g #@#@ etc. * enum.c (enum_sort_by): sort_by does not have to be stable always. * enum.c (enum_sort_by): call qsort directly to gain performance. * util.c (ruby_qsort): ruby_qsort(qs6) is now native thread safe. * error.c (rb_sys_fail): it must be a bug if it's called when errno == 0. * regex.c (WC2MBC1ST): should not pass through > 0x80 number in UTF-8. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@1896 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2001-12-10 02:18:16 -05:00
if (RBASIC(ary)->klass) {
rb_raise(rb_eRuntimeError, "sort_by reentered");
}
a = *(VALUE *)ap;
b = *(VALUE *)bp;
return rb_cmpint(rb_funcall(a, id_cmp, 1, b), a, b);
}
/*
* call-seq:
* enum.sort_by { |obj| block } -> array
* enum.sort_by -> an_enumerator
*
* Sorts <i>enum</i> using a set of keys generated by mapping the
* values in <i>enum</i> through the given block.
*
* If no block is given, an enumerator is returned instead.
*
* %w{apple pear fig}.sort_by { |word| word.length}
* #=> ["fig", "pear", "apple"]
*
* The current implementation of <code>sort_by</code> generates an
* array of tuples containing the original collection element and the
* mapped value. This makes <code>sort_by</code> fairly expensive when
* the keysets are simple.
*
* require 'benchmark'
*
* a = (1..100000).map { rand(100000) }
*
* Benchmark.bm(10) do |b|
* b.report("Sort") { a.sort }
* b.report("Sort by") { a.sort_by { |a| a } }
* end
*
* <em>produces:</em>
*
* user system total real
* Sort 0.180000 0.000000 0.180000 ( 0.175469)
* Sort by 1.980000 0.040000 2.020000 ( 2.013586)
*
* However, consider the case where comparing the keys is a non-trivial
* operation. The following code sorts some files on modification time
* using the basic <code>sort</code> method.
*
* files = Dir["*"]
* sorted = files.sort { |a, b| File.new(a).mtime <=> File.new(b).mtime }
* sorted #=> ["mon", "tues", "wed", "thurs"]
*
* This sort is inefficient: it generates two new <code>File</code>
* objects during every comparison. A slightly better technique is to
* use the <code>Kernel#test</code> method to generate the modification
* times directly.
*
* files = Dir["*"]
* sorted = files.sort { |a, b|
* test(?M, a) <=> test(?M, b)
* }
* sorted #=> ["mon", "tues", "wed", "thurs"]
*
* This still generates many unnecessary <code>Time</code> objects. A
* more efficient technique is to cache the sort keys (modification
* times in this case) before the sort. Perl users often call this
* approach a Schwartzian Transform, after Randal Schwartz. We
* construct a temporary array, where each element is an array
* containing our sort key along with the filename. We sort this array,
* and then extract the filename from the result.
*
* sorted = Dir["*"].collect { |f|
* [test(?M, f), f]
* }.sort.collect { |f| f[1] }
* sorted #=> ["mon", "tues", "wed", "thurs"]
*
* This is exactly what <code>sort_by</code> does internally.
*
* sorted = Dir["*"].sort_by { |f| test(?M, f) }
* sorted #=> ["mon", "tues", "wed", "thurs"]
*/
static VALUE
enum_sort_by(VALUE obj)
{
VALUE ary, buf;
NODE *memo;
long i;
struct sort_by_data *data;
RETURN_ENUMERATOR(obj, 0, 0);
if (RB_TYPE_P(obj, T_ARRAY) && RARRAY_LEN(obj) <= LONG_MAX/2) {
ary = rb_ary_new2(RARRAY_LEN(obj)*2);
}
else {
ary = rb_ary_new();
}
RBASIC(ary)->klass = 0;
buf = rb_ary_tmp_new(SORT_BY_BUFSIZE*2);
rb_ary_store(buf, SORT_BY_BUFSIZE*2-1, Qnil);
memo = NEW_MEMO(0, 0, 0);
OBJ_INFECT(memo, obj);
data = (struct sort_by_data *)&memo->u1;
data->ary = ary;
data->buf = buf;
data->n = 0;
rb_block_call(obj, id_each, 0, 0, sort_by_i, (VALUE)memo);
ary = data->ary;
buf = data->buf;
if (data->n) {
rb_ary_resize(buf, data->n*2);
rb_ary_concat(ary, buf);
}
if (RARRAY_LEN(ary) > 2) {
ruby_qsort(RARRAY_PTR(ary), RARRAY_LEN(ary)/2, 2*sizeof(VALUE),
sort_by_cmp, (void *)ary);
}
if (RBASIC(ary)->klass) {
rb_raise(rb_eRuntimeError, "sort_by reentered");
}
for (i=1; i<RARRAY_LEN(ary); i+=2) {
RARRAY_PTR(ary)[i/2] = RARRAY_PTR(ary)[i];
}
rb_ary_resize(ary, RARRAY_LEN(ary)/2);
RBASIC(ary)->klass = rb_cArray;
OBJ_INFECT(ary, memo);
return ary;
}
#define ENUMFUNC(name) rb_block_given_p() ? name##_iter_i : name##_i
#define DEFINE_ENUMFUNCS(name) \
static VALUE enum_##name##_func(VALUE result, NODE *memo); \
\
static VALUE \
name##_i(VALUE i, VALUE memo, int argc, VALUE *argv) \
{ \
return enum_##name##_func(rb_enum_values_pack(argc, argv), RNODE(memo)); \
} \
\
static VALUE \
name##_iter_i(VALUE i, VALUE memo, int argc, VALUE *argv) \
{ \
return enum_##name##_func(enum_yield(argc, argv), RNODE(memo)); \
} \
\
static VALUE \
enum_##name##_func(VALUE result, NODE *memo)
DEFINE_ENUMFUNCS(all)
{
if (!RTEST(result)) {
memo->u1.value = Qfalse;
rb_iter_break();
}
return Qnil;
}
/*
* call-seq:
* enum.all? [{ |obj| block } ] -> true or false
*
* Passes each element of the collection to the given block. The method
* returns <code>true</code> if the block never returns
* <code>false</code> or <code>nil</code>. If the block is not given,
* Ruby adds an implicit block of <code>{ |obj| obj }</code> which will
* cause #all? to return +true+ when none of the collection members are
* +false+ or +nil+.
*
* %w[ant bear cat].all? { |word| word.length >= 3 } #=> true
* %w[ant bear cat].all? { |word| word.length >= 4 } #=> false
* [nil, true, 99].all? #=> false
*
*/
static VALUE
enum_all(VALUE obj)
{
NODE *memo = NEW_MEMO(Qtrue, 0, 0);
rb_block_call(obj, id_each, 0, 0, ENUMFUNC(all), (VALUE)memo);
return memo->u1.value;
}
DEFINE_ENUMFUNCS(any)
{
if (RTEST(result)) {
memo->u1.value = Qtrue;
rb_iter_break();
}
return Qnil;
}
/*
* call-seq:
* enum.any? [{ |obj| block }] -> true or false
*
* Passes each element of the collection to the given block. The method
* returns <code>true</code> if the block ever returns a value other
* than <code>false</code> or <code>nil</code>. If the block is not
* given, Ruby adds an implicit block of <code>{ |obj| obj }</code> that
* will cause #any? to return +true+ if at least one of the collection
* members is not +false+ or +nil+.
*
* %w[ant bear cat].any? { |word| word.length >= 3 } #=> true
* %w[ant bear cat].any? { |word| word.length >= 4 } #=> true
* [nil, true, 99].any? #=> true
*
*/
static VALUE
enum_any(VALUE obj)
{
NODE *memo = NEW_MEMO(Qfalse, 0, 0);
rb_block_call(obj, id_each, 0, 0, ENUMFUNC(any), (VALUE)memo);
return memo->u1.value;
}
DEFINE_ENUMFUNCS(one)
{
if (RTEST(result)) {
if (memo->u1.value == Qundef) {
memo->u1.value = Qtrue;
}
else if (memo->u1.value == Qtrue) {
memo->u1.value = Qfalse;
rb_iter_break();
}
}
return Qnil;
}
/*
* call-seq:
* enum.one? [{ |obj| block }] -> true or false
*
* Passes each element of the collection to the given block. The method
* returns <code>true</code> if the block returns <code>true</code>
* exactly once. If the block is not given, <code>one?</code> will return
* <code>true</code> only if exactly one of the collection members is
* true.
*
* %w{ant bear cat}.one? { |word| word.length == 4 } #=> true
* %w{ant bear cat}.one? { |word| word.length > 4 } #=> false
* %w{ant bear cat}.one? { |word| word.length < 4 } #=> false
* [ nil, true, 99 ].one? #=> false
* [ nil, true, false ].one? #=> true
*
*/
static VALUE
enum_one(VALUE obj)
{
NODE *memo = NEW_MEMO(Qundef, 0, 0);
VALUE result;
rb_block_call(obj, id_each, 0, 0, ENUMFUNC(one), (VALUE)memo);
result = memo->u1.value;
if (result == Qundef) return Qfalse;
return result;
}
DEFINE_ENUMFUNCS(none)
{
if (RTEST(result)) {
memo->u1.value = Qfalse;
rb_iter_break();
}
return Qnil;
}
/*
* call-seq:
* enum.none? [{ |obj| block }] -> true or false
*
* Passes each element of the collection to the given block. The method
* returns <code>true</code> if the block never returns <code>true</code>
* for all elements. If the block is not given, <code>none?</code> will return
* <code>true</code> only if none of the collection members is true.
*
* %w{ant bear cat}.none? { |word| word.length == 5 } #=> true
* %w{ant bear cat}.none? { |word| word.length >= 4 } #=> false
* [].none? #=> true
* [nil].none? #=> true
* [nil, false].none? #=> true
*/
static VALUE
enum_none(VALUE obj)
{
NODE *memo = NEW_MEMO(Qtrue, 0, 0);
rb_block_call(obj, id_each, 0, 0, ENUMFUNC(none), (VALUE)memo);
return memo->u1.value;
}
static VALUE
min_i(VALUE i, VALUE args, int argc, VALUE *argv)
{
VALUE cmp;
NODE *memo = RNODE(args);
ENUM_WANT_SVALUE();
if (memo->u1.value == Qundef) {
memo->u1.value = i;
}
else {
cmp = rb_funcall(i, id_cmp, 1, memo->u1.value);
if (rb_cmpint(cmp, i, memo->u1.value) < 0) {
memo->u1.value = i;
}
}
return Qnil;
}
static VALUE
min_ii(VALUE i, VALUE args, int argc, VALUE *argv)
{
VALUE cmp;
NODE *memo = RNODE(args);
ENUM_WANT_SVALUE();
if (memo->u1.value == Qundef) {
memo->u1.value = i;
}
else {
cmp = rb_yield_values(2, i, memo->u1.value);
if (rb_cmpint(cmp, i, memo->u1.value) < 0) {
memo->u1.value = i;
}
}
return Qnil;
}
/*
* call-seq:
* enum.min -> obj
* enum.min { |a, b| block } -> obj
*
* Returns the object in <i>enum</i> with the minimum value. The
* first form assumes all objects implement <code>Comparable</code>;
* the second uses the block to return <em>a <=> b</em>.
*
* a = %w(albatross dog horse)
* a.min #=> "albatross"
* a.min { |a, b| a.length <=> b.length } #=> "dog"
*/
static VALUE
enum_min(VALUE obj)
{
NODE *memo = NEW_MEMO(Qundef, 0, 0);
VALUE result;
if (rb_block_given_p()) {
rb_block_call(obj, id_each, 0, 0, min_ii, (VALUE)memo);
}
else {
rb_block_call(obj, id_each, 0, 0, min_i, (VALUE)memo);
}
result = memo->u1.value;
if (result == Qundef) return Qnil;
return result;
}
static VALUE
max_i(VALUE i, VALUE args, int argc, VALUE *argv)
{
NODE *memo = RNODE(args);
VALUE cmp;
ENUM_WANT_SVALUE();
if (memo->u1.value == Qundef) {
memo->u1.value = i;
}
else {
cmp = rb_funcall(i, id_cmp, 1, memo->u1.value);
if (rb_cmpint(cmp, i, memo->u1.value) > 0) {
memo->u1.value = i;
}
}
return Qnil;
}
static VALUE
max_ii(VALUE i, VALUE args, int argc, VALUE *argv)
{
NODE *memo = RNODE(args);
VALUE cmp;
ENUM_WANT_SVALUE();
if (memo->u1.value == Qundef) {
memo->u1.value = i;
}
else {
cmp = rb_yield_values(2, i, memo->u1.value);
if (rb_cmpint(cmp, i, memo->u1.value) > 0) {
memo->u1.value = i;
}
}
return Qnil;
}
/*
* call-seq:
* enum.max -> obj
* enum.max { |a, b| block } -> obj
*
* Returns the object in _enum_ with the maximum value. The
* first form assumes all objects implement <code>Comparable</code>;
* the second uses the block to return <em>a <=> b</em>.
*
* a = %w(albatross dog horse)
* a.max #=> "horse"
* a.max { |a, b| a.length <=> b.length } #=> "albatross"
*/
static VALUE
enum_max(VALUE obj)
{
NODE *memo = NEW_MEMO(Qundef, 0, 0);
VALUE result;
if (rb_block_given_p()) {
rb_block_call(obj, id_each, 0, 0, max_ii, (VALUE)memo);
}
else {
rb_block_call(obj, id_each, 0, 0, max_i, (VALUE)memo);
}
result = memo->u1.value;
if (result == Qundef) return Qnil;
return result;
}
struct minmax_t {
VALUE min;
VALUE max;
VALUE last;
};
STATIC_ASSERT(minmax_t, sizeof(struct minmax_t) <= sizeof(NODE) - offsetof(NODE, u1));
static void
minmax_i_update(VALUE i, VALUE j, struct minmax_t *memo)
{
int n;
if (memo->min == Qundef) {
memo->min = i;
memo->max = j;
}
else {
n = rb_cmpint(rb_funcall(i, id_cmp, 1, memo->min), i, memo->min);
if (n < 0) {
memo->min = i;
}
n = rb_cmpint(rb_funcall(j, id_cmp, 1, memo->max), j, memo->max);
if (n > 0) {
memo->max = j;
}
}
}
static VALUE
minmax_i(VALUE i, VALUE _memo, int argc, VALUE *argv)
{
struct minmax_t *memo = (struct minmax_t *)&RNODE(_memo)->u1.value;
int n;
VALUE j;
ENUM_WANT_SVALUE();
if (memo->last == Qundef) {
memo->last = i;
return Qnil;
}
j = memo->last;
memo->last = Qundef;
n = rb_cmpint(rb_funcall(j, id_cmp, 1, i), j, i);
if (n == 0)
i = j;
else if (n < 0) {
VALUE tmp;
tmp = i;
i = j;
j = tmp;
}
minmax_i_update(i, j, memo);
return Qnil;
}
static void
minmax_ii_update(VALUE i, VALUE j, struct minmax_t *memo)
{
int n;
if (memo->min == Qundef) {
memo->min = i;
memo->max = j;
}
else {
n = rb_cmpint(rb_yield_values(2, i, memo->min), i, memo->min);
if (n < 0) {
memo->min = i;
}
n = rb_cmpint(rb_yield_values(2, j, memo->max), j, memo->max);
if (n > 0) {
memo->max = j;
}
}
}
static VALUE
minmax_ii(VALUE i, VALUE _memo, int argc, VALUE *argv)
{
struct minmax_t *memo = (struct minmax_t *)&RNODE(_memo)->u1.value;
int n;
VALUE j;
ENUM_WANT_SVALUE();
if (memo->last == Qundef) {
memo->last = i;
return Qnil;
}
j = memo->last;
memo->last = Qundef;
n = rb_cmpint(rb_yield_values(2, j, i), j, i);
if (n == 0)
i = j;
else if (n < 0) {
VALUE tmp;
tmp = i;
i = j;
j = tmp;
}
minmax_ii_update(i, j, memo);
return Qnil;
}
/*
* call-seq:
* enum.minmax -> [min, max]
* enum.minmax { |a, b| block } -> [min, max]
*
* Returns two elements array which contains the minimum and the
* maximum value in the enumerable. The first form assumes all
* objects implement <code>Comparable</code>; the second uses the
* block to return <em>a <=> b</em>.
*
* a = %w(albatross dog horse)
* a.minmax #=> ["albatross", "horse"]
* a.minmax { |a, b| a.length <=> b.length } #=> ["dog", "albatross"]
*/
static VALUE
enum_minmax(VALUE obj)
{
NODE *memo = NEW_MEMO(Qundef, Qundef, Qundef);
struct minmax_t *m = (struct minmax_t *)&memo->u1.value;
VALUE ary = rb_ary_new3(2, Qnil, Qnil);
m->min = Qundef;
m->last = Qundef;
if (rb_block_given_p()) {
rb_block_call(obj, id_each, 0, 0, minmax_ii, (VALUE)memo);
if (m->last != Qundef)
minmax_ii_update(m->last, m->last, m);
}
else {
rb_block_call(obj, id_each, 0, 0, minmax_i, (VALUE)memo);
if (m->last != Qundef)
minmax_i_update(m->last, m->last, m);
}
if (m->min != Qundef) {
rb_ary_store(ary, 0, m->min);
rb_ary_store(ary, 1, m->max);
}
return ary;
}
static VALUE
min_by_i(VALUE i, VALUE args, int argc, VALUE *argv)
{
NODE *memo = RNODE(args);
VALUE v;
ENUM_WANT_SVALUE();
v = rb_yield(i);
if (memo->u1.value == Qundef) {
memo->u1.value = v;
memo->u2.value = i;
}
else if (rb_cmpint(rb_funcall(v, id_cmp, 1, memo->u1.value), v, memo->u1.value) < 0) {
memo->u1.value = v;
memo->u2.value = i;
}
return Qnil;
}
/*
* call-seq:
* enum.min_by { |obj| block } -> obj
* enum.min_by -> an_enumerator
*
* Returns the object in <i>enum</i> that gives the minimum
* value from the given block.
*
* If no block is given, an enumerator is returned instead.
*
* a = %w(albatross dog horse)
* a.min_by { |x| x.length } #=> "dog"
*/
static VALUE
enum_min_by(VALUE obj)
{
NODE *memo;
RETURN_ENUMERATOR(obj, 0, 0);
memo = NEW_MEMO(Qundef, Qnil, 0);
rb_block_call(obj, id_each, 0, 0, min_by_i, (VALUE)memo);
return memo->u2.value;
}
static VALUE
max_by_i(VALUE i, VALUE args, int argc, VALUE *argv)
{
NODE *memo = RNODE(args);
VALUE v;
ENUM_WANT_SVALUE();
v = rb_yield(i);
if (memo->u1.value == Qundef) {
memo->u1.value = v;
memo->u2.value = i;
}
else if (rb_cmpint(rb_funcall(v, id_cmp, 1, memo->u1.value), v, memo->u1.value) > 0) {
memo->u1.value = v;
memo->u2.value = i;
}
return Qnil;
}
/*
* call-seq:
* enum.max_by { |obj| block } -> obj
* enum.max_by -> an_enumerator
*
* Returns the object in <i>enum</i> that gives the maximum
* value from the given block.
*
* If no block is given, an enumerator is returned instead.
*
* a = %w(albatross dog horse)
* a.max_by { |x| x.length } #=> "albatross"
*/
static VALUE
enum_max_by(VALUE obj)
{
NODE *memo;
RETURN_ENUMERATOR(obj, 0, 0);
memo = NEW_MEMO(Qundef, Qnil, 0);
rb_block_call(obj, id_each, 0, 0, max_by_i, (VALUE)memo);
return memo->u2.value;
}
struct minmax_by_t {
VALUE min_bv;
VALUE max_bv;
VALUE min;
VALUE max;
VALUE last_bv;
VALUE last;
};
static void
minmax_by_i_update(VALUE v1, VALUE v2, VALUE i1, VALUE i2, struct minmax_by_t *memo)
{
if (memo->min_bv == Qundef) {
memo->min_bv = v1;
memo->max_bv = v2;
memo->min = i1;
memo->max = i2;
}
else {
if (rb_cmpint(rb_funcall(v1, id_cmp, 1, memo->min_bv), v1, memo->min_bv) < 0) {
memo->min_bv = v1;
memo->min = i1;
}
if (rb_cmpint(rb_funcall(v2, id_cmp, 1, memo->max_bv), v2, memo->max_bv) > 0) {
memo->max_bv = v2;
memo->max = i2;
}
}
}
static VALUE
minmax_by_i(VALUE i, VALUE _memo, int argc, VALUE *argv)
{
struct minmax_by_t *memo = MEMO_FOR(struct minmax_by_t, _memo);
VALUE vi, vj, j;
int n;
ENUM_WANT_SVALUE();
vi = rb_yield(i);
if (memo->last_bv == Qundef) {
memo->last_bv = vi;
memo->last = i;
return Qnil;
}
vj = memo->last_bv;
j = memo->last;
memo->last_bv = Qundef;
n = rb_cmpint(rb_funcall(vj, id_cmp, 1, vi), vj, vi);
if (n == 0) {
i = j;
vi = vj;
}
else if (n < 0) {
VALUE tmp;
tmp = i;
i = j;
j = tmp;
tmp = vi;
vi = vj;
vj = tmp;
}
minmax_by_i_update(vi, vj, i, j, memo);
return Qnil;
}
/*
* call-seq:
* enum.minmax_by { |obj| block } -> [min, max]
* enum.minmax_by -> an_enumerator
*
* Returns a two element array containing the objects in
* <i>enum</i> that correspond to the minimum and maximum values respectively
* from the given block.
*
* If no block is given, an enumerator is returned instead.
*
* a = %w(albatross dog horse)
* a.minmax_by { |x| x.length } #=> ["dog", "albatross"]
*/
static VALUE
enum_minmax_by(VALUE obj)
{
VALUE memo;
struct minmax_by_t *m = NEW_MEMO_FOR(struct minmax_by_t, memo);
RETURN_ENUMERATOR(obj, 0, 0);
m->min_bv = Qundef;
m->max_bv = Qundef;
m->min = Qnil;
m->max = Qnil;
m->last_bv = Qundef;
m->last = Qundef;
rb_block_call(obj, id_each, 0, 0, minmax_by_i, memo);
if (m->last_bv != Qundef)
minmax_by_i_update(m->last_bv, m->last_bv, m->last, m->last, m);
m = MEMO_FOR(struct minmax_by_t, memo);
return rb_assoc_new(m->min, m->max);
}
static VALUE
member_i(VALUE iter, VALUE args, int argc, VALUE *argv)
{
NODE *memo = RNODE(args);
if (rb_equal(rb_enum_values_pack(argc, argv), memo->u1.value)) {
memo->u2.value = Qtrue;
rb_iter_break();
}
return Qnil;
}
/*
* call-seq:
* enum.include?(obj) -> true or false
* enum.member?(obj) -> true or false
*
* Returns <code>true</code> if any member of <i>enum</i> equals
* <i>obj</i>. Equality is tested using <code>==</code>.
*
* IO.constants.include? :SEEK_SET #=> true
* IO.constants.include? :SEEK_NO_FURTHER #=> false
*
*/
static VALUE
enum_member(VALUE obj, VALUE val)
{
NODE *memo = NEW_MEMO(val, Qfalse, 0);
rb_block_call(obj, id_each, 0, 0, member_i, (VALUE)memo);
return memo->u2.value;
}
static VALUE
each_with_index_i(VALUE i, VALUE memo, int argc, VALUE *argv)
{
long n = RNODE(memo)->u3.cnt++;
return rb_yield_values(2, rb_enum_values_pack(argc, argv), INT2NUM(n));
}
/*
* call-seq:
* enum.each_with_index(*args) { |obj, i| block } -> enum
* enum.each_with_index(*args) -> an_enumerator
*
* Calls <em>block</em> with two arguments, the item and its index,
* for each item in <i>enum</i>. Given arguments are passed through
* to #each().
*
* If no block is given, an enumerator is returned instead.
*
* hash = Hash.new
* %w(cat dog wombat).each_with_index { |item, index|
* hash[item] = index
* }
* hash #=> {"cat"=>0, "dog"=>1, "wombat"=>2}
*
*/
static VALUE
enum_each_with_index(int argc, VALUE *argv, VALUE obj)
{
NODE *memo;
RETURN_ENUMERATOR(obj, argc, argv);
memo = NEW_MEMO(0, 0, 0);
rb_block_call(obj, id_each, argc, argv, each_with_index_i, (VALUE)memo);
return obj;
}
/*
* call-seq:
* enum.reverse_each(*args) { |item| block } -> enum
* enum.reverse_each(*args) -> an_enumerator
*
* Builds a temporary array and traverses that array in reverse order.
*
* If no block is given, an enumerator is returned instead.
*
* (1..3).reverse_each { |v| p v }
*
* produces:
*
* 3
* 2
* 1
*/
static VALUE
enum_reverse_each(int argc, VALUE *argv, VALUE obj)
{
VALUE ary;
long i;
RETURN_ENUMERATOR(obj, argc, argv);
ary = enum_to_a(argc, argv, obj);
for (i = RARRAY_LEN(ary); --i >= 0; ) {
rb_yield(RARRAY_PTR(ary)[i]);
}
return obj;
}
static VALUE
each_val_i(VALUE i, VALUE p, int argc, VALUE *argv)
{
ENUM_WANT_SVALUE();
rb_yield(i);
return Qnil;
}
/*
* call-seq:
* enum.each_entry { |obj| block } -> enum
* enum.each_entry -> an_enumerator
*
* Calls <i>block</i> once for each element in +self+, passing that
* element as a parameter, converting multiple values from yield to an
* array.
*
* If no block is given, an enumerator is returned instead.
*
* class Foo
* include Enumerable
* def each
* yield 1
* yield 1, 2
* yield
* end
* end
* Foo.new.each_entry{ |o| p o }
*
* produces:
*
* 1
* [1, 2]
* nil
*
*/
static VALUE
enum_each_entry(int argc, VALUE *argv, VALUE obj)
{
RETURN_ENUMERATOR(obj, argc, argv);
rb_block_call(obj, id_each, argc, argv, each_val_i, 0);
return obj;
}
static VALUE
each_slice_i(VALUE i, VALUE m, int argc, VALUE *argv)
{
NODE *memo = RNODE(m);
VALUE ary = memo->u1.value;
VALUE v = Qnil;
long size = memo->u3.cnt;
ENUM_WANT_SVALUE();
rb_ary_push(ary, i);
if (RARRAY_LEN(ary) == size) {
v = rb_yield(ary);
memo->u1.value = rb_ary_new2(size);
}
return v;
}
/*
* call-seq:
* enum.each_slice(n) { ... } -> nil
* enum.each_slice(n) -> an_enumerator
*
* Iterates the given block for each slice of <n> elements. If no
* block is given, returns an enumerator.
*
* (1..10).each_slice(3) { |a| p a }
* # outputs below
* [1, 2, 3]
* [4, 5, 6]
* [7, 8, 9]
* [10]
*
*/
static VALUE
enum_each_slice(VALUE obj, VALUE n)
{
long size = NUM2LONG(n);
VALUE ary;
NODE *memo;
if (size <= 0) rb_raise(rb_eArgError, "invalid slice size");
RETURN_ENUMERATOR(obj, 1, &n);
ary = rb_ary_new2(size);
memo = NEW_MEMO(ary, 0, size);
rb_block_call(obj, id_each, 0, 0, each_slice_i, (VALUE)memo);
ary = memo->u1.value;
if (RARRAY_LEN(ary) > 0) rb_yield(ary);
return Qnil;
}
static VALUE
each_cons_i(VALUE i, VALUE args, int argc, VALUE *argv)
{
NODE *memo = RNODE(args);
VALUE ary = memo->u1.value;
VALUE v = Qnil;
long size = memo->u3.cnt;
ENUM_WANT_SVALUE();
if (RARRAY_LEN(ary) == size) {
rb_ary_shift(ary);
}
rb_ary_push(ary, i);
if (RARRAY_LEN(ary) == size) {
v = rb_yield(rb_ary_dup(ary));
}
return v;
}
/*
* call-seq:
* enum.each_cons(n) { ... } -> nil
* enum.each_cons(n) -> an_enumerator
*
* Iterates the given block for each array of consecutive <n>
* elements. If no block is given, returns an enumerator.
*
* e.g.:
* (1..10).each_cons(3) { |a| p a }
* # outputs below
* [1, 2, 3]
* [2, 3, 4]
* [3, 4, 5]
* [4, 5, 6]
* [5, 6, 7]
* [6, 7, 8]
* [7, 8, 9]
* [8, 9, 10]
*
*/
static VALUE
enum_each_cons(VALUE obj, VALUE n)
{
long size = NUM2LONG(n);
NODE *memo;
if (size <= 0) rb_raise(rb_eArgError, "invalid size");
RETURN_ENUMERATOR(obj, 1, &n);
memo = NEW_MEMO(rb_ary_new2(size), 0, size);
rb_block_call(obj, id_each, 0, 0, each_cons_i, (VALUE)memo);
return Qnil;
}
static VALUE
each_with_object_i(VALUE i, VALUE memo, int argc, VALUE *argv)
{
ENUM_WANT_SVALUE();
return rb_yield_values(2, i, memo);
}
/*
* call-seq:
* enum.each_with_object(obj) { |(*args), memo_obj| ... } -> obj
* enum.each_with_object(obj) -> an_enumerator
*
* Iterates the given block for each element with an arbitrary
* object given, and returns the initially given object.
*
* If no block is given, returns an enumerator.
*
* evens = (1..10).each_with_object([]) { |i, a| a << i*2 }
* #=> [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
*
*/
static VALUE
enum_each_with_object(VALUE obj, VALUE memo)
{
RETURN_ENUMERATOR(obj, 1, &memo);
rb_block_call(obj, id_each, 0, 0, each_with_object_i, memo);
return memo;
}
static VALUE
zip_ary(VALUE val, NODE *memo, int argc, VALUE *argv)
{
volatile VALUE result = memo->u1.value;
volatile VALUE args = memo->u2.value;
long n = memo->u3.cnt++;
volatile VALUE tmp;
int i;
tmp = rb_ary_new2(RARRAY_LEN(args) + 1);
rb_ary_store(tmp, 0, rb_enum_values_pack(argc, argv));
for (i=0; i<RARRAY_LEN(args); i++) {
VALUE e = RARRAY_PTR(args)[i];
if (RARRAY_LEN(e) <= n) {
rb_ary_push(tmp, Qnil);
}
else {
rb_ary_push(tmp, RARRAY_PTR(e)[n]);
}
}
if (NIL_P(result)) {
rb_yield(tmp);
}
else {
rb_ary_push(result, tmp);
}
return Qnil;
}
static VALUE
call_next(VALUE *v)
{
return v[0] = rb_funcall(v[1], id_next, 0, 0);
}
static VALUE
call_stop(VALUE *v)
{
return v[0] = Qundef;
}
static VALUE
zip_i(VALUE val, NODE *memo, int argc, VALUE *argv)
{
volatile VALUE result = memo->u1.value;
volatile VALUE args = memo->u2.value;
volatile VALUE tmp;
int i;
tmp = rb_ary_new2(RARRAY_LEN(args) + 1);
rb_ary_store(tmp, 0, rb_enum_values_pack(argc, argv));
for (i=0; i<RARRAY_LEN(args); i++) {
if (NIL_P(RARRAY_PTR(args)[i])) {
rb_ary_push(tmp, Qnil);
}
else {
VALUE v[2];
v[1] = RARRAY_PTR(args)[i];
rb_rescue2(call_next, (VALUE)v, call_stop, (VALUE)v, rb_eStopIteration, (VALUE)0);
if (v[0] == Qundef) {
RARRAY_PTR(args)[i] = Qnil;
v[0] = Qnil;
}
rb_ary_push(tmp, v[0]);
}
}
if (NIL_P(result)) {
rb_yield(tmp);
}
else {
rb_ary_push(result, tmp);
}
return Qnil;
}
/*
* call-seq:
* enum.zip(arg, ...) -> an_array_of_array
* enum.zip(arg, ...) { |arr| block } -> nil
*
* Takes one element from <i>enum</i> and merges corresponding
* elements from each <i>args</i>. This generates a sequence of
* <em>n</em>-element arrays, where <em>n</em> is one more than the
* count of arguments. The length of the resulting sequence will be
* <code>enum#size</code>. If the size of any argument is less than
* <code>enum#size</code>, <code>nil</code> values are supplied. If
* a block is given, it is invoked for each output array, otherwise
* an array of arrays is returned.
*
* a = [ 4, 5, 6 ]
* b = [ 7, 8, 9 ]
*
* [1, 2, 3].zip(a, b) #=> [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
* [1, 2].zip(a, b) #=> [[1, 4, 7], [2, 5, 8]]
* a.zip([1, 2], [8]) #=> [[4, 1, 8], [5, 2, nil], [6, nil, nil]]
*
*/
static VALUE
enum_zip(int argc, VALUE *argv, VALUE obj)
{
int i;
ID conv;
NODE *memo;
VALUE result = Qnil;
VALUE args = rb_ary_new4(argc, argv);
int allary = TRUE;
argv = RARRAY_PTR(args);
for (i=0; i<argc; i++) {
VALUE ary = rb_check_array_type(argv[i]);
if (NIL_P(ary)) {
allary = FALSE;
break;
}
argv[i] = ary;
}
if (!allary) {
CONST_ID(conv, "to_enum");
for (i=0; i<argc; i++) {
argv[i] = rb_funcall(argv[i], conv, 1, ID2SYM(id_each));
}
}
if (!rb_block_given_p()) {
result = rb_ary_new();
}
/* use NODE_DOT2 as memo(v, v, -) */
memo = rb_node_newnode(NODE_DOT2, result, args, 0);
rb_block_call(obj, id_each, 0, 0, allary ? zip_ary : zip_i, (VALUE)memo);
return result;
}
static VALUE
take_i(VALUE i, VALUE args, int argc, VALUE *argv)
{
NODE *memo = RNODE(args);
rb_ary_push(memo->u1.value, rb_enum_values_pack(argc, argv));
if (--memo->u3.cnt == 0) rb_iter_break();
return Qnil;
}
/*
* call-seq:
* enum.take(n) -> array
*
* Returns first n elements from <i>enum</i>.
*
* a = [1, 2, 3, 4, 5, 0]
* a.take(3) #=> [1, 2, 3]
*
*/
static VALUE
enum_take(VALUE obj, VALUE n)
{
NODE *memo;
VALUE result;
long len = NUM2LONG(n);
if (len < 0) {
rb_raise(rb_eArgError, "attempt to take negative size");
}
if (len == 0) return rb_ary_new2(0);
result = rb_ary_new2(len);
memo = NEW_MEMO(result, 0, len);
rb_block_call(obj, id_each, 0, 0, take_i, (VALUE)memo);
return result;
}
static VALUE
take_while_i(VALUE i, VALUE ary, int argc, VALUE *argv)
{
if (!RTEST(enum_yield(argc, argv))) rb_iter_break();
rb_ary_push(ary, rb_enum_values_pack(argc, argv));
return Qnil;
}
/*
* call-seq:
* enum.take_while { |arr| block } -> array
* enum.take_while -> an_enumerator
*
* Passes elements to the block until the block returns +nil+ or +false+,
* then stops iterating and returns an array of all prior elements.
*
* If no block is given, an enumerator is returned instead.
*
* a = [1, 2, 3, 4, 5, 0]
* a.take_while { |i| i < 3 } #=> [1, 2]
*
*/
static VALUE
enum_take_while(VALUE obj)
{
VALUE ary;
RETURN_ENUMERATOR(obj, 0, 0);
ary = rb_ary_new();
rb_block_call(obj, id_each, 0, 0, take_while_i, ary);
return ary;
}
static VALUE
drop_i(VALUE i, VALUE args, int argc, VALUE *argv)
{
NODE *memo = RNODE(args);
if (memo->u3.cnt == 0) {
rb_ary_push(memo->u1.value, rb_enum_values_pack(argc, argv));
}
else {
memo->u3.cnt--;
}
return Qnil;
}
/*
* call-seq:
* enum.drop(n) -> array
*
* Drops first n elements from <i>enum</i>, and returns rest elements
* in an array.
*
* a = [1, 2, 3, 4, 5, 0]
* a.drop(3) #=> [4, 5, 0]
*
*/
static VALUE
enum_drop(VALUE obj, VALUE n)
{
VALUE result;
NODE *memo;
long len = NUM2LONG(n);
if (len < 0) {
rb_raise(rb_eArgError, "attempt to drop negative size");
}
result = rb_ary_new();
memo = NEW_MEMO(result, 0, len);
rb_block_call(obj, id_each, 0, 0, drop_i, (VALUE)memo);
return result;
}
static VALUE
drop_while_i(VALUE i, VALUE args, int argc, VALUE *argv)
{
NODE *memo = RNODE(args);
ENUM_WANT_SVALUE();
if (!memo->u3.state && !RTEST(rb_yield(i))) {
memo->u3.state = TRUE;
}
if (memo->u3.state) {
rb_ary_push(memo->u1.value, i);
}
return Qnil;
}
/*
* call-seq:
* enum.drop_while { |arr| block } -> array
* enum.drop_while -> an_enumerator
*
* Drops elements up to, but not including, the first element for
* which the block returns +nil+ or +false+ and returns an array
* containing the remaining elements.
*
* If no block is given, an enumerator is returned instead.
*
* a = [1, 2, 3, 4, 5, 0]
* a.drop_while { |i| i < 3 } #=> [3, 4, 5, 0]
*
*/
static VALUE
enum_drop_while(VALUE obj)
{
VALUE result;
NODE *memo;
RETURN_ENUMERATOR(obj, 0, 0);
result = rb_ary_new();
memo = NEW_MEMO(result, 0, FALSE);
rb_block_call(obj, id_each, 0, 0, drop_while_i, (VALUE)memo);
return result;
}
static VALUE
cycle_i(VALUE i, VALUE ary, int argc, VALUE *argv)
{
ENUM_WANT_SVALUE();
rb_ary_push(ary, i);
rb_yield(i);
return Qnil;
}
/*
* call-seq:
* enum.cycle(n=nil) { |obj| block } -> nil
* enum.cycle(n=nil) -> an_enumerator
*
* Calls <i>block</i> for each element of <i>enum</i> repeatedly _n_
* times or forever if none or +nil+ is given. If a non-positive
* number is given or the collection is empty, does nothing. Returns
* +nil+ if the loop has finished without getting interrupted.
*
* Enumerable#cycle saves elements in an internal array so changes
* to <i>enum</i> after the first pass have no effect.
*
* If no block is given, an enumerator is returned instead.
*
* a = ["a", "b", "c"]
* a.cycle { |x| puts x } # print, a, b, c, a, b, c,.. forever.
* a.cycle(2) { |x| puts x } # print, a, b, c, a, b, c.
*
*/
static VALUE
enum_cycle(int argc, VALUE *argv, VALUE obj)
{
VALUE ary;
VALUE nv = Qnil;
long n, i, len;
rb_scan_args(argc, argv, "01", &nv);
RETURN_ENUMERATOR(obj, argc, argv);
if (NIL_P(nv)) {
n = -1;
}
else {
n = NUM2LONG(nv);
if (n <= 0) return Qnil;
}
ary = rb_ary_new();
RBASIC(ary)->klass = 0;
rb_block_call(obj, id_each, 0, 0, cycle_i, ary);
len = RARRAY_LEN(ary);
if (len == 0) return Qnil;
while (n < 0 || 0 < --n) {
for (i=0; i<len; i++) {
rb_yield(RARRAY_PTR(ary)[i]);
}
}
return Qnil;
}
struct chunk_arg {
VALUE categorize;
VALUE state;
VALUE prev_value;
VALUE prev_elts;
VALUE yielder;
};
static VALUE
chunk_ii(VALUE i, VALUE _argp, int argc, VALUE *argv)
{
struct chunk_arg *argp = MEMO_FOR(struct chunk_arg, _argp);
VALUE v;
VALUE alone = ID2SYM(rb_intern("_alone"));
VALUE separator = ID2SYM(rb_intern("_separator"));
ENUM_WANT_SVALUE();
if (NIL_P(argp->state))
v = rb_funcall(argp->categorize, rb_intern("call"), 1, i);
else
v = rb_funcall(argp->categorize, rb_intern("call"), 2, i, argp->state);
if (v == alone) {
if (!NIL_P(argp->prev_value)) {
rb_funcall(argp->yielder, id_lshift, 1, rb_assoc_new(argp->prev_value, argp->prev_elts));
argp->prev_value = argp->prev_elts = Qnil;
}
rb_funcall(argp->yielder, id_lshift, 1, rb_assoc_new(v, rb_ary_new3(1, i)));
}
else if (NIL_P(v) || v == separator) {
if (!NIL_P(argp->prev_value)) {
rb_funcall(argp->yielder, id_lshift, 1, rb_assoc_new(argp->prev_value, argp->prev_elts));
argp->prev_value = argp->prev_elts = Qnil;
}
}
else if (SYMBOL_P(v) && rb_id2name(SYM2ID(v))[0] == '_') {
rb_raise(rb_eRuntimeError, "symbol begins with an underscore is reserved");
}
else {
if (NIL_P(argp->prev_value)) {
argp->prev_value = v;
argp->prev_elts = rb_ary_new3(1, i);
}
else {
if (rb_equal(argp->prev_value, v)) {
rb_ary_push(argp->prev_elts, i);
}
else {
rb_funcall(argp->yielder, id_lshift, 1, rb_assoc_new(argp->prev_value, argp->prev_elts));
argp->prev_value = v;
argp->prev_elts = rb_ary_new3(1, i);
}
}
}
return Qnil;
}
static VALUE
chunk_i(VALUE yielder, VALUE enumerator, int argc, VALUE *argv)
{
VALUE enumerable;
VALUE arg;
struct chunk_arg *memo = NEW_MEMO_FOR(struct chunk_arg, arg);
enumerable = rb_ivar_get(enumerator, rb_intern("chunk_enumerable"));
memo->categorize = rb_ivar_get(enumerator, rb_intern("chunk_categorize"));
memo->state = rb_ivar_get(enumerator, rb_intern("chunk_initial_state"));
memo->prev_value = Qnil;
memo->prev_elts = Qnil;
memo->yielder = yielder;
if (!NIL_P(memo->state))
memo->state = rb_obj_dup(memo->state);
rb_block_call(enumerable, id_each, 0, 0, chunk_ii, arg);
memo = MEMO_FOR(struct chunk_arg, arg);
if (!NIL_P(memo->prev_elts))
rb_funcall(memo->yielder, id_lshift, 1, rb_assoc_new(memo->prev_value, memo->prev_elts));
return Qnil;
}
/*
* call-seq:
* enum.chunk { |elt| ... } -> an_enumerator
* enum.chunk(initial_state) { |elt, state| ... } -> an_enumerator
*
* Creates an enumerator for each chunked elements.
* The consecutive elements which have same block value are chunked.
*
* The result enumerator yields the block value and an array of chunked elements.
* So "each" method can be called as follows.
*
* enum.chunk { |elt| key }.each { |key, ary| ... }
* enum.chunk(initial_state) { |elt, state| key }.each { |key, ary| ... }
*
* For example, consecutive even numbers and odd numbers can be
* splitted as follows.
*
* [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5].chunk { |n|
* n.even?
* }.each { |even, ary|
* p [even, ary]
* }
* #=> [false, [3, 1]]
* # [true, [4]]
* # [false, [1, 5, 9]]
* # [true, [2, 6]]
* # [false, [5, 3, 5]]
*
* This method is especially useful for sorted series of elements.
* The following example counts words for each initial letter.
*
* open("/usr/share/dict/words", "r:iso-8859-1") { |f|
* f.chunk { |line| line.ord }.each { |ch, lines| p [ch.chr, lines.length] }
* }
* #=> ["\n", 1]
* # ["A", 1327]
* # ["B", 1372]
* # ["C", 1507]
* # ["D", 791]
* # ...
*
* The following key values has special meaning:
* - nil and :_separator specifies that the elements are dropped.
* - :_alone specifies that the element should be chunked as a singleton.
* Other symbols which begins an underscore are reserved.
*
* nil and :_separator can be used to ignore some elements.
* For example, the sequence of hyphens in svn log can be eliminated as follows.
*
* sep = "-"*72 + "\n"
* IO.popen("svn log README") { |f|
* f.chunk { |line|
* line != sep || nil
* }.each { |_, lines|
* pp lines
* }
* }
* #=> ["r20018 | knu | 2008-10-29 13:20:42 +0900 (Wed, 29 Oct 2008) | 2 lines\n",
* # "\n",
* # "* README, README.ja: Update the portability section.\n",
* # "\n"]
* # ["r16725 | knu | 2008-05-31 23:34:23 +0900 (Sat, 31 May 2008) | 2 lines\n",
* # "\n",
* # "* README, README.ja: Add a note about default C flags.\n",
* # "\n"]
* # ...
*
* paragraphs separated by empty lines can be parsed as follows.
*
* File.foreach("README").chunk { |line|
* /\A\s*\z/ !~ line || nil
* }.each { |_, lines|
* pp lines
* }
*
* :_alone can be used to pass through bunch of elements.
* For example, sort consecutive lines formed as Foo#bar and
* pass other lines, chunk can be used as follows.
*
* pat = /\A[A-Z][A-Za-z0-9_]+\#/
* open(filename) { |f|
* f.chunk { |line| pat =~ line ? $& : :_alone }.each { |key, lines|
* if key != :_alone
* print lines.sort.join('')
* else
* print lines.join('')
* end
* }
* }
*
* If the block needs to maintain state over multiple elements,
* _initial_state_ argument can be used.
* If non-nil value is given,
* it is duplicated for each "each" method invocation of the enumerator.
* The duplicated object is passed to 2nd argument of the block for "chunk" method.
*
*/
static VALUE
enum_chunk(int argc, VALUE *argv, VALUE enumerable)
{
VALUE initial_state;
VALUE enumerator;
if(!rb_block_given_p())
rb_raise(rb_eArgError, "no block given");
rb_scan_args(argc, argv, "01", &initial_state);
enumerator = rb_obj_alloc(rb_cEnumerator);
rb_ivar_set(enumerator, rb_intern("chunk_enumerable"), enumerable);
rb_ivar_set(enumerator, rb_intern("chunk_categorize"), rb_block_proc());
rb_ivar_set(enumerator, rb_intern("chunk_initial_state"), initial_state);
rb_block_call(enumerator, rb_intern("initialize"), 0, 0, chunk_i, enumerator);
return enumerator;
}
struct slicebefore_arg {
VALUE sep_pred;
VALUE sep_pat;
VALUE state;
VALUE prev_elts;
VALUE yielder;
};
static VALUE
slicebefore_ii(VALUE i, VALUE _argp, int argc, VALUE *argv)
{
struct slicebefore_arg *argp = MEMO_FOR(struct slicebefore_arg, _argp);
VALUE header_p;
ENUM_WANT_SVALUE();
if (!NIL_P(argp->sep_pat))
header_p = rb_funcall(argp->sep_pat, id_eqq, 1, i);
else if (NIL_P(argp->state))
header_p = rb_funcall(argp->sep_pred, rb_intern("call"), 1, i);
else
header_p = rb_funcall(argp->sep_pred, rb_intern("call"), 2, i, argp->state);
if (RTEST(header_p)) {
if (!NIL_P(argp->prev_elts))
rb_funcall(argp->yielder, id_lshift, 1, argp->prev_elts);
argp->prev_elts = rb_ary_new3(1, i);
}
else {
if (NIL_P(argp->prev_elts))
argp->prev_elts = rb_ary_new3(1, i);
else
rb_ary_push(argp->prev_elts, i);
}
return Qnil;
}
static VALUE
slicebefore_i(VALUE yielder, VALUE enumerator, int argc, VALUE *argv)
{
VALUE enumerable;
VALUE arg;
struct slicebefore_arg *memo = NEW_MEMO_FOR(struct slicebefore_arg, arg);
enumerable = rb_ivar_get(enumerator, rb_intern("slicebefore_enumerable"));
memo->sep_pred = rb_attr_get(enumerator, rb_intern("slicebefore_sep_pred"));
memo->sep_pat = NIL_P(memo->sep_pred) ? rb_ivar_get(enumerator, rb_intern("slicebefore_sep_pat")) : Qnil;
memo->state = rb_attr_get(enumerator, rb_intern("slicebefore_initial_state"));
memo->prev_elts = Qnil;
memo->yielder = yielder;
if (!NIL_P(memo->state))
memo->state = rb_obj_dup(memo->state);
rb_block_call(enumerable, id_each, 0, 0, slicebefore_ii, arg);
memo = MEMO_FOR(struct slicebefore_arg, arg);
if (!NIL_P(memo->prev_elts))
rb_funcall(memo->yielder, id_lshift, 1, memo->prev_elts);
return Qnil;
}
/*
* call-seq:
* enum.slice_before(pattern) -> an_enumerator
* enum.slice_before { |elt| bool } -> an_enumerator
* enum.slice_before(initial_state) { |elt, state| bool } -> an_enumerator
*
* Creates an enumerator for each chunked elements.
* The beginnings of chunks are defined by _pattern_ and the block.
* If _pattern_ === _elt_ returns true or
* the block returns true for the element,
* the element is beginning of a chunk.
*
* The === and block is called from the first element to the last element
* of _enum_.
* The result for the first element is ignored.
*
* The result enumerator yields the chunked elements as an array for +each+
* method.
* +each+ method can be called as follows.
*
* enum.slice_before(pattern).each { |ary| ... }
* enum.slice_before { |elt| bool }.each { |ary| ... }
* enum.slice_before(initial_state) { |elt, state| bool }.each { |ary| ... }
*
* Other methods of Enumerator class and Enumerable module,
* such as map, etc., are also usable.
*
* For example, iteration over ChangeLog entries can be implemented as
* follows.
*
* # iterate over ChangeLog entries.
* open("ChangeLog") { |f|
* f.slice_before(/\A\S/).each { |e| pp e }
* }
*
* # same as above. block is used instead of pattern argument.
* open("ChangeLog") { |f|
* f.slice_before { |line| /\A\S/ === line }.each { |e| pp e }
* }
*
* "svn proplist -R" produces multiline output for each file.
* They can be chunked as follows:
*
* IO.popen([{"LC_ALL"=>"C"}, "svn", "proplist", "-R"]) { |f|
* f.lines.slice_before(/\AProp/).each { |lines| p lines }
* }
* #=> ["Properties on '.':\n", " svn:ignore\n", " svk:merge\n"]
* # ["Properties on 'goruby.c':\n", " svn:eol-style\n"]
* # ["Properties on 'complex.c':\n", " svn:mime-type\n", " svn:eol-style\n"]
* # ["Properties on 'regparse.c':\n", " svn:eol-style\n"]
* # ...
*
* If the block needs to maintain state over multiple elements,
* local variables can be used.
* For example, three or more consecutive increasing numbers can be squashed
* as follows:
*
* a = [0, 2, 3, 4, 6, 7, 9]
* prev = a[0]
* p a.slice_before { |e|
* prev, prev2 = e, prev
* prev2 + 1 != e
* }.map { |es|
* es.length <= 2 ? es.join(",") : "#{es.first}-#{es.last}"
* }.join(",")
* #=> "0,2-4,6,7,9"
*
* However local variables are not appropriate to maintain state
* if the result enumerator is used twice or more.
* In such case, the last state of the 1st +each+ is used in 2nd +each+.
* _initial_state_ argument can be used to avoid this problem.
* If non-nil value is given as _initial_state_,
* it is duplicated for each "each" method invocation of the enumerator.
* The duplicated object is passed to 2nd argument of the block for
* +slice_before+ method.
*
* # word wrapping.
* # this assumes all characters have same width.
* def wordwrap(words, maxwidth)
* # if cols is a local variable, 2nd "each" may start with non-zero cols.
* words.slice_before(cols: 0) { |w, h|
* h[:cols] += 1 if h[:cols] != 0
* h[:cols] += w.length
* if maxwidth < h[:cols]
* h[:cols] = w.length
* true
* else
* false
* end
* }
* end
* text = (1..20).to_a.join(" ")
* enum = wordwrap(text.split(/\s+/), 10)
* puts "-"*10
* enum.each { |ws| puts ws.join(" ") }
* puts "-"*10
* #=> ----------
* # 1 2 3 4 5
* # 6 7 8 9 10
* # 11 12 13
* # 14 15 16
* # 17 18 19
* # 20
* # ----------
*
* mbox contains series of mails which start with Unix From line.
* So each mail can be extracted by slice before Unix From line.
*
* # parse mbox
* open("mbox") { |f|
* f.slice_before { |line|
* line.start_with? "From "
* }.each { |mail|
* unix_from = mail.shift
* i = mail.index("\n")
* header = mail[0...i]
* body = mail[(i+1)..-1]
* body.pop if body.last == "\n"
* fields = header.slice_before { |line| !" \t".include?(line[0]) }.to_a
* p unix_from
* pp fields
* pp body
* }
* }
*
* # split mails in mbox (slice before Unix From line after an empty line)
* open("mbox") { |f|
* f.slice_before(emp: true) { |line, h|
* prevemp = h[:emp]
* h[:emp] = line == "\n"
* prevemp && line.start_with?("From ")
* }.each { |mail|
* mail.pop if mail.last == "\n"
* pp mail
* }
* }
*
*/
static VALUE
enum_slice_before(int argc, VALUE *argv, VALUE enumerable)
{
VALUE enumerator;
if (rb_block_given_p()) {
VALUE initial_state;
rb_scan_args(argc, argv, "01", &initial_state);
enumerator = rb_obj_alloc(rb_cEnumerator);
rb_ivar_set(enumerator, rb_intern("slicebefore_sep_pred"), rb_block_proc());
rb_ivar_set(enumerator, rb_intern("slicebefore_initial_state"), initial_state);
}
else {
VALUE sep_pat;
rb_scan_args(argc, argv, "1", &sep_pat);
enumerator = rb_obj_alloc(rb_cEnumerator);
rb_ivar_set(enumerator, rb_intern("slicebefore_sep_pat"), sep_pat);
}
rb_ivar_set(enumerator, rb_intern("slicebefore_enumerable"), enumerable);
rb_block_call(enumerator, rb_intern("initialize"), 0, 0, slicebefore_i, enumerator);
return enumerator;
}
/*
* The <code>Enumerable</code> mixin provides collection classes with
* several traversal and searching methods, and with the ability to
* sort. The class must provide a method <code>each</code>, which
* yields successive members of the collection. If
* <code>Enumerable#max</code>, <code>#min</code>, or
* <code>#sort</code> is used, the objects in the collection must also
* implement a meaningful <code><=></code> operator, as these methods
* rely on an ordering between members of the collection.
*/
void
Init_Enumerable(void)
{
#undef rb_intern
#define rb_intern(str) rb_intern_const(str)
rb_mEnumerable = rb_define_module("Enumerable");
rb_define_method(rb_mEnumerable, "to_a", enum_to_a, -1);
rb_define_method(rb_mEnumerable, "entries", enum_to_a, -1);
rb_define_method(rb_mEnumerable, "sort", enum_sort, 0);
rb_define_method(rb_mEnumerable, "sort_by", enum_sort_by, 0);
rb_define_method(rb_mEnumerable, "grep", enum_grep, 1);
rb_define_method(rb_mEnumerable, "count", enum_count, -1);
rb_define_method(rb_mEnumerable, "find", enum_find, -1);
rb_define_method(rb_mEnumerable, "detect", enum_find, -1);
rb_define_method(rb_mEnumerable, "find_index", enum_find_index, -1);
rb_define_method(rb_mEnumerable, "find_all", enum_find_all, 0);
rb_define_method(rb_mEnumerable, "select", enum_find_all, 0);
rb_define_method(rb_mEnumerable, "reject", enum_reject, 0);
rb_define_method(rb_mEnumerable, "collect", enum_collect, 0);
rb_define_method(rb_mEnumerable, "map", enum_collect, 0);
rb_define_method(rb_mEnumerable, "flat_map", enum_flat_map, 0);
rb_define_method(rb_mEnumerable, "collect_concat", enum_flat_map, 0);
rb_define_method(rb_mEnumerable, "inject", enum_inject, -1);
rb_define_method(rb_mEnumerable, "reduce", enum_inject, -1);
rb_define_method(rb_mEnumerable, "partition", enum_partition, 0);
rb_define_method(rb_mEnumerable, "group_by", enum_group_by, 0);
rb_define_method(rb_mEnumerable, "first", enum_first, -1);
rb_define_method(rb_mEnumerable, "all?", enum_all, 0);
rb_define_method(rb_mEnumerable, "any?", enum_any, 0);
rb_define_method(rb_mEnumerable, "one?", enum_one, 0);
rb_define_method(rb_mEnumerable, "none?", enum_none, 0);
rb_define_method(rb_mEnumerable, "min", enum_min, 0);
rb_define_method(rb_mEnumerable, "max", enum_max, 0);
rb_define_method(rb_mEnumerable, "minmax", enum_minmax, 0);
rb_define_method(rb_mEnumerable, "min_by", enum_min_by, 0);
rb_define_method(rb_mEnumerable, "max_by", enum_max_by, 0);
rb_define_method(rb_mEnumerable, "minmax_by", enum_minmax_by, 0);
rb_define_method(rb_mEnumerable, "member?", enum_member, 1);
rb_define_method(rb_mEnumerable, "include?", enum_member, 1);
rb_define_method(rb_mEnumerable, "each_with_index", enum_each_with_index, -1);
rb_define_method(rb_mEnumerable, "reverse_each", enum_reverse_each, -1);
rb_define_method(rb_mEnumerable, "each_entry", enum_each_entry, -1);
rb_define_method(rb_mEnumerable, "each_slice", enum_each_slice, 1);
rb_define_method(rb_mEnumerable, "each_cons", enum_each_cons, 1);
rb_define_method(rb_mEnumerable, "each_with_object", enum_each_with_object, 1);
rb_define_method(rb_mEnumerable, "zip", enum_zip, -1);
rb_define_method(rb_mEnumerable, "take", enum_take, 1);
rb_define_method(rb_mEnumerable, "take_while", enum_take_while, 0);
rb_define_method(rb_mEnumerable, "drop", enum_drop, 1);
rb_define_method(rb_mEnumerable, "drop_while", enum_drop_while, 0);
rb_define_method(rb_mEnumerable, "cycle", enum_cycle, -1);
rb_define_method(rb_mEnumerable, "chunk", enum_chunk, -1);
rb_define_method(rb_mEnumerable, "slice_before", enum_slice_before, -1);
id_next = rb_intern("next");
}