mirror of
https://github.com/ruby/ruby.git
synced 2022-11-09 12:17:21 -05:00
7a6ebecf9e
* math.c (math_atan2): return values like as expected by C99 if both two arguments are infinity. based on the patch by cremno phobia <cremno AT mail.ru> in [ruby-core:62310]. [Feature #9799] git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@45805 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
292 lines
8.8 KiB
Ruby
292 lines
8.8 KiB
Ruby
require 'test/unit'
|
|
|
|
class TestMath < Test::Unit::TestCase
|
|
def assert_infinity(a, *rest)
|
|
rest = ["not infinity: #{a.inspect}"] if rest.empty?
|
|
assert_not_predicate(a, :finite?, *rest)
|
|
end
|
|
|
|
def assert_nan(a, *rest)
|
|
rest = ["not nan: #{a.inspect}"] if rest.empty?
|
|
assert_predicate(a, :nan?, *rest)
|
|
end
|
|
|
|
def assert_float(a, b)
|
|
err = [Float::EPSILON * 4, [a.abs, b.abs].max * Float::EPSILON * 256].max
|
|
assert_in_delta(a, b, err)
|
|
end
|
|
alias check assert_float
|
|
|
|
def test_atan2
|
|
check(+0.0, Math.atan2(+0.0, +0.0))
|
|
check(-0.0, Math.atan2(-0.0, +0.0))
|
|
check(+Math::PI, Math.atan2(+0.0, -0.0))
|
|
check(-Math::PI, Math.atan2(-0.0, -0.0))
|
|
|
|
inf = Float::INFINITY
|
|
expected = 3.0 * Math::PI / 4.0
|
|
assert_nothing_raised { check(+expected, Math.atan2(+inf, -inf)) }
|
|
assert_nothing_raised { check(-expected, Math.atan2(-inf, -inf)) }
|
|
expected = Math::PI / 4.0
|
|
assert_nothing_raised { check(+expected, Math.atan2(+inf, +inf)) }
|
|
assert_nothing_raised { check(-expected, Math.atan2(-inf, +inf)) }
|
|
|
|
check(0, Math.atan2(0, 1))
|
|
check(Math::PI / 4, Math.atan2(1, 1))
|
|
check(Math::PI / 2, Math.atan2(1, 0))
|
|
end
|
|
|
|
def test_cos
|
|
check(1.0, Math.cos(0 * Math::PI / 4))
|
|
check(1.0 / Math.sqrt(2), Math.cos(1 * Math::PI / 4))
|
|
check(0.0, Math.cos(2 * Math::PI / 4))
|
|
check(-1.0, Math.cos(4 * Math::PI / 4))
|
|
check(0.0, Math.cos(6 * Math::PI / 4))
|
|
end
|
|
|
|
def test_sin
|
|
check(0.0, Math.sin(0 * Math::PI / 4))
|
|
check(1.0 / Math.sqrt(2), Math.sin(1 * Math::PI / 4))
|
|
check(1.0, Math.sin(2 * Math::PI / 4))
|
|
check(0.0, Math.sin(4 * Math::PI / 4))
|
|
check(-1.0, Math.sin(6 * Math::PI / 4))
|
|
end
|
|
|
|
def test_tan
|
|
check(0.0, Math.tan(0 * Math::PI / 4))
|
|
check(1.0, Math.tan(1 * Math::PI / 4))
|
|
assert_operator(Math.tan(2 * Math::PI / 4).abs, :>, 1024)
|
|
check(0.0, Math.tan(4 * Math::PI / 4))
|
|
assert_operator(Math.tan(6 * Math::PI / 4).abs, :>, 1024)
|
|
end
|
|
|
|
def test_acos
|
|
check(0 * Math::PI / 4, Math.acos( 1.0))
|
|
check(1 * Math::PI / 4, Math.acos( 1.0 / Math.sqrt(2)))
|
|
check(2 * Math::PI / 4, Math.acos( 0.0))
|
|
check(4 * Math::PI / 4, Math.acos(-1.0))
|
|
assert_raise(Math::DomainError) { Math.acos(+1.0 + Float::EPSILON) }
|
|
assert_raise(Math::DomainError) { Math.acos(-1.0 - Float::EPSILON) }
|
|
assert_raise(Math::DomainError) { Math.acos(2.0) }
|
|
end
|
|
|
|
def test_asin
|
|
check( 0 * Math::PI / 4, Math.asin( 0.0))
|
|
check( 1 * Math::PI / 4, Math.asin( 1.0 / Math.sqrt(2)))
|
|
check( 2 * Math::PI / 4, Math.asin( 1.0))
|
|
check(-2 * Math::PI / 4, Math.asin(-1.0))
|
|
assert_raise(Math::DomainError) { Math.asin(+1.0 + Float::EPSILON) }
|
|
assert_raise(Math::DomainError) { Math.asin(-1.0 - Float::EPSILON) }
|
|
assert_raise(Math::DomainError) { Math.asin(2.0) }
|
|
end
|
|
|
|
def test_atan
|
|
check( 0 * Math::PI / 4, Math.atan( 0.0))
|
|
check( 1 * Math::PI / 4, Math.atan( 1.0))
|
|
check( 2 * Math::PI / 4, Math.atan(1.0 / 0.0))
|
|
check(-1 * Math::PI / 4, Math.atan(-1.0))
|
|
end
|
|
|
|
def test_cosh
|
|
check(1, Math.cosh(0))
|
|
check((Math::E ** 1 + Math::E ** -1) / 2, Math.cosh(1))
|
|
check((Math::E ** 2 + Math::E ** -2) / 2, Math.cosh(2))
|
|
end
|
|
|
|
def test_sinh
|
|
check(0, Math.sinh(0))
|
|
check((Math::E ** 1 - Math::E ** -1) / 2, Math.sinh(1))
|
|
check((Math::E ** 2 - Math::E ** -2) / 2, Math.sinh(2))
|
|
end
|
|
|
|
def test_tanh
|
|
check(Math.sinh(0) / Math.cosh(0), Math.tanh(0))
|
|
check(Math.sinh(1) / Math.cosh(1), Math.tanh(1))
|
|
check(Math.sinh(2) / Math.cosh(2), Math.tanh(2))
|
|
end
|
|
|
|
def test_acosh
|
|
check(0, Math.acosh(1))
|
|
check(1, Math.acosh((Math::E ** 1 + Math::E ** -1) / 2))
|
|
check(2, Math.acosh((Math::E ** 2 + Math::E ** -2) / 2))
|
|
assert_raise(Math::DomainError) { Math.acosh(1.0 - Float::EPSILON) }
|
|
assert_raise(Math::DomainError) { Math.acosh(0) }
|
|
end
|
|
|
|
def test_asinh
|
|
check(0, Math.asinh(0))
|
|
check(1, Math.asinh((Math::E ** 1 - Math::E ** -1) / 2))
|
|
check(2, Math.asinh((Math::E ** 2 - Math::E ** -2) / 2))
|
|
end
|
|
|
|
def test_atanh
|
|
check(0, Math.atanh(Math.sinh(0) / Math.cosh(0)))
|
|
check(1, Math.atanh(Math.sinh(1) / Math.cosh(1)))
|
|
check(2, Math.atanh(Math.sinh(2) / Math.cosh(2)))
|
|
assert_nothing_raised { assert_infinity(Math.atanh(1)) }
|
|
assert_nothing_raised { assert_infinity(-Math.atanh(-1)) }
|
|
assert_raise(Math::DomainError) { Math.atanh(+1.0 + Float::EPSILON) }
|
|
assert_raise(Math::DomainError) { Math.atanh(-1.0 - Float::EPSILON) }
|
|
end
|
|
|
|
def test_exp
|
|
check(1, Math.exp(0))
|
|
check(Math.sqrt(Math::E), Math.exp(0.5))
|
|
check(Math::E, Math.exp(1))
|
|
check(Math::E ** 2, Math.exp(2))
|
|
end
|
|
|
|
def test_log
|
|
check(0, Math.log(1))
|
|
check(1, Math.log(Math::E))
|
|
check(0, Math.log(1, 10))
|
|
check(1, Math.log(10, 10))
|
|
check(2, Math.log(100, 10))
|
|
check(Math.log(2.0 ** 64), Math.log(1 << 64))
|
|
assert_equal(1.0/0, Math.log(1.0/0))
|
|
assert_nothing_raised { assert_infinity(-Math.log(+0.0)) }
|
|
assert_nothing_raised { assert_infinity(-Math.log(-0.0)) }
|
|
assert_raise(Math::DomainError) { Math.log(-1.0) }
|
|
assert_raise(TypeError) { Math.log(1,nil) }
|
|
assert_raise(Math::DomainError, '[ruby-core:62309] [ruby-Bug #9797]') { Math.log(1.0, -1.0) }
|
|
assert_nothing_raised { assert_nan(Math.log(0.0, 0.0)) }
|
|
end
|
|
|
|
def test_log2
|
|
check(0, Math.log2(1))
|
|
check(1, Math.log2(2))
|
|
check(2, Math.log2(4))
|
|
check(Math.log2(2.0 ** 64), Math.log2(1 << 64))
|
|
assert_equal(1.0/0, Math.log2(1.0/0))
|
|
assert_nothing_raised { assert_infinity(-Math.log2(+0.0)) }
|
|
assert_nothing_raised { assert_infinity(-Math.log2(-0.0)) }
|
|
assert_raise(Math::DomainError) { Math.log2(-1.0) }
|
|
end
|
|
|
|
def test_log10
|
|
check(0, Math.log10(1))
|
|
check(1, Math.log10(10))
|
|
check(2, Math.log10(100))
|
|
check(Math.log10(2.0 ** 64), Math.log10(1 << 64))
|
|
assert_equal(1.0/0, Math.log10(1.0/0))
|
|
assert_nothing_raised { assert_infinity(-Math.log10(+0.0)) }
|
|
assert_nothing_raised { assert_infinity(-Math.log10(-0.0)) }
|
|
assert_raise(Math::DomainError) { Math.log10(-1.0) }
|
|
end
|
|
|
|
def test_sqrt
|
|
check(0, Math.sqrt(0))
|
|
check(1, Math.sqrt(1))
|
|
check(2, Math.sqrt(4))
|
|
assert_equal(1.0/0, Math.sqrt(1.0/0))
|
|
assert_equal("0.0", Math.sqrt(-0.0).to_s) # insure it is +0.0, not -0.0
|
|
assert_raise(Math::DomainError) { Math.sqrt(-1.0) }
|
|
end
|
|
|
|
def test_frexp
|
|
check(0.0, Math.frexp(0.0).first)
|
|
assert_equal(0, Math.frexp(0).last)
|
|
check(0.5, Math.frexp(0.5).first)
|
|
assert_equal(0, Math.frexp(0.5).last)
|
|
check(0.5, Math.frexp(1.0).first)
|
|
assert_equal(1, Math.frexp(1.0).last)
|
|
check(0.5, Math.frexp(2.0).first)
|
|
assert_equal(2, Math.frexp(2.0).last)
|
|
check(0.75, Math.frexp(3.0).first)
|
|
assert_equal(2, Math.frexp(3.0).last)
|
|
end
|
|
|
|
def test_ldexp
|
|
check(0.0, Math.ldexp(0.0, 0.0))
|
|
check(0.5, Math.ldexp(0.5, 0.0))
|
|
check(1.0, Math.ldexp(0.5, 1.0))
|
|
check(2.0, Math.ldexp(0.5, 2.0))
|
|
check(3.0, Math.ldexp(0.75, 2.0))
|
|
end
|
|
|
|
def test_hypot
|
|
check(5, Math.hypot(3, 4))
|
|
end
|
|
|
|
def test_erf
|
|
check(0, Math.erf(0))
|
|
check(1, Math.erf(1.0 / 0.0))
|
|
end
|
|
|
|
def test_erfc
|
|
check(1, Math.erfc(0))
|
|
check(0, Math.erfc(1.0 / 0.0))
|
|
end
|
|
|
|
def test_gamma
|
|
sqrt_pi = Math.sqrt(Math::PI)
|
|
check(4 * sqrt_pi / 3, Math.gamma(-1.5))
|
|
check(-2 * sqrt_pi, Math.gamma(-0.5))
|
|
check(sqrt_pi, Math.gamma(0.5))
|
|
check(1, Math.gamma(1))
|
|
check(sqrt_pi / 2, Math.gamma(1.5))
|
|
check(1, Math.gamma(2))
|
|
check(3 * sqrt_pi / 4, Math.gamma(2.5))
|
|
check(2, Math.gamma(3))
|
|
check(15 * sqrt_pi / 8, Math.gamma(3.5))
|
|
check(6, Math.gamma(4))
|
|
|
|
# no SEGV [ruby-core:25257]
|
|
31.upto(65) do |i|
|
|
i = 1 << i
|
|
assert_infinity(Math.gamma(i), "Math.gamma(#{i}) should be INF")
|
|
assert_infinity(Math.gamma(i-1), "Math.gamma(#{i-1}) should be INF")
|
|
end
|
|
|
|
assert_raise(Math::DomainError) { Math.gamma(-Float::INFINITY) }
|
|
end
|
|
|
|
def test_lgamma
|
|
sqrt_pi = Math.sqrt(Math::PI)
|
|
|
|
g, s = Math.lgamma(-1.5)
|
|
check(Math.log(4 * sqrt_pi / 3), g)
|
|
assert_equal(s, 1)
|
|
|
|
g, s = Math.lgamma(-0.5)
|
|
check(Math.log(2 * sqrt_pi), g)
|
|
assert_equal(s, -1)
|
|
|
|
g, s = Math.lgamma(0.5)
|
|
check(Math.log(sqrt_pi), g)
|
|
assert_equal(s, 1)
|
|
|
|
assert_equal([0, 1], Math.lgamma(1))
|
|
|
|
g, s = Math.lgamma(1.5)
|
|
check(Math.log(sqrt_pi / 2), g)
|
|
assert_equal(s, 1)
|
|
|
|
assert_equal([0, 1], Math.lgamma(2))
|
|
|
|
g, s = Math.lgamma(2.5)
|
|
check(Math.log(3 * sqrt_pi / 4), g)
|
|
assert_equal(s, 1)
|
|
|
|
g, s = Math.lgamma(3)
|
|
check(Math.log(2), g)
|
|
assert_equal(s, 1)
|
|
|
|
g, s = Math.lgamma(3.5)
|
|
check(Math.log(15 * sqrt_pi / 8), g)
|
|
assert_equal(s, 1)
|
|
|
|
g, s = Math.lgamma(4)
|
|
check(Math.log(6), g)
|
|
assert_equal(s, 1)
|
|
|
|
assert_raise(Math::DomainError) { Math.lgamma(-Float::INFINITY) }
|
|
end
|
|
|
|
def test_cbrt
|
|
check(1, Math.cbrt(1))
|
|
check(-2, Math.cbrt(-8))
|
|
check(3, Math.cbrt(27))
|
|
check(-0.1, Math.cbrt(-0.001))
|
|
end
|
|
end
|