Closes #340
21 KiB
Getting Started
Update Your Gemfile
If you're using Rails, you'll need to change the required version of factory_girl_rails
:
gem "factory_girl_rails", "~> 3.0"
If you're not using Rails, you'll just have to change the required version of factory_girl
:
gem "factory_girl", "~> 3.0"
Once your Gemfile is updated, you'll want to update your bundle.
Defining factories
Each factory has a name and a set of attributes. The name is used to guess the class of the object by default, but it's possible to explicitly specify it:
# This will guess the User class
FactoryGirl.define do
factory :user do
first_name "John"
last_name "Doe"
admin false
end
# This will use the User class (Admin would have been guessed)
factory :admin, class: User do
first_name "Admin"
last_name "User"
admin true
end
end
It is highly recommended that you have one factory for each class that provides the simplest set of attributes necessary to create an instance of that class. If you're creating ActiveRecord objects, that means that you should only provide attributes that are required through validations and that do not have defaults. Other factories can be created through inheritance to cover common scenarios for each class.
Attempting to define multiple factories with the same name will raise an error.
Factories can be defined anywhere, but will be automatically loaded if they are defined in files at the following locations:
test/factories.rb
spec/factories.rb
test/factories/*.rb
spec/factories/*.rb
Using factories
factory_girl supports several different build strategies: build, create, attributes_for and stub:
# Returns a User instance that's not saved
user = FactoryGirl.build(:user)
# Returns a saved User instance
user = FactoryGirl.create(:user)
# Returns a hash of attributes that can be used to build a User instance
attrs = FactoryGirl.attributes_for(:user)
# Returns an object with all defined attributes stubbed out
stub = FactoryGirl.build_stubbed(:user)
# Passing a block to any of the methods above will yield the return object
FactoryGirl.create(:user) do |user|
user.posts.create(attributes_for(:post))
end
No matter which strategy is used, it's possible to override the defined attributes by passing a hash:
# Build a User instance and override the first_name property
user = FactoryGirl.build(:user, first_name: "Joe")
user.first_name
# => "Joe"
If repeating "FactoryGirl" is too verbose for you, you can mix the syntax methods in:
# rspec
RSpec.configure do |config|
config.include FactoryGirl::Syntax::Methods
end
# Test::Unit
class Test::Unit::TestCase
include FactoryGirl::Syntax::Methods
end
# Cucumber
World(FactoryGirl::Syntax::Methods)
This would allow you to write:
describe User, "#full_name" do
subject { create(:user, first_name: "John", last_name: "Doe") }
its(:full_name) { should == "John Doe" }
end
Lazy Attributes
Most factory attributes can be added using static values that are evaluated when the factory is defined, but some attributes (such as associations and other attributes that must be dynamically generated) will need values assigned each time an instance is generated. These "lazy" attributes can be added by passing a block instead of a parameter:
factory :user do
# ...
activation_code { User.generate_activation_code }
date_of_birth { 21.years.ago }
end
In addition to running other methods dynamically, you can use FactoryGirl's
syntax methods (like build
, create
, and generate
) within dynamic
attributes without having to prefix the call with FactoryGirl.
. This allows
you to do:
sequence(:random_string) {|n| LoremIpsum.generate }
factory :post do
title { generate(:random_string) } # instead of FactoryGirl.generate(:random_string)
end
factory :comment do
post
body { generate(:random_string) } # instead of FactoryGirl.generate(:random_string)
end
Aliases
Aliases allow you to use named associations more easily.
factory :user, aliases: [:author, :commenter] do
first_name "John"
last_name "Doe"
date_of_birth { 18.years.ago }
end
factory :post do
author
# instead of
# association :author, factory: :user
title "How to read a book effectively"
body "There are five steps involved."
end
factory :comment do
commenter
# instead of
# association :commenter, factory: :user
body "Great article!"
end
Dependent Attributes
Attributes can be based on the values of other attributes using the evaluator that is yielded to lazy attribute blocks:
factory :user do
first_name "Joe"
last_name "Blow"
email { "#{first_name}.#{last_name}@example.com".downcase }
end
FactoryGirl.create(:user, last_name: "Doe").email
# => "joe.doe@example.com"
Transient Attributes
There may be times where your code can be DRYed up by passing in transient attributes to factories.
factory :user do
ignore do
rockstar true
upcased false
end
name { "John Doe#{" - Rockstar" if rockstar}" }
email { "#{name.downcase}@example.com" }
after_create do |user, evaluator|
user.name.upcase! if evaluator.upcased
end
end
FactoryGirl.create(:user, upcased: true).name
#=> "JOHN DOE - ROCKSTAR"
Static and dynamic attributes can be ignored. Ignored attributes will be ignored within attributes_for and won't be set on the model, even if the attribute exists or you attempt to override it.
Within Factory Girl's dynamic attributes, you can access ignored attributes as you would expect. If you need to access the evaluator in a Factory Girl callback, you'll need to declare a second block argument (for the evaluator) and access ignored attributes from there.
Associations
It's possible to set up associations within factories. If the factory name is the same as the association name, the factory name can be left out.
factory :post do
# ...
author
end
You can also specify a different factory or override attributes:
factory :post do
# ...
association :author, factory: :user, last_name: "Writely"
end
The behavior of the association method varies depending on the build strategy used for the parent object.
# Builds and saves a User and a Post
post = FactoryGirl.create(:post)
post.new_record? # => false
post.author.new_record? # => false
# Builds and saves a User, and then builds but does not save a Post
post = FactoryGirl.build(:post)
post.new_record? # => true
post.author.new_record? # => false
To not save the associated object, specify strategy: :build in the factory:
factory :post do
# ...
association :author, factory: :user, strategy: :build
end
# Builds a User, and then builds a Post, but does not save either
post = FactoryGirl.build(:post)
post.new_record? # => true
post.author.new_record? # => true
Generating data for a has_many
relationship is a bit more involved,
depending on the amount of flexibility desired, but here's a surefire example
of generating associated data.
FactoryGirl.define do
# post factory with a `belongs_to` association for the user
factory :post do
title "Through the Looking Glass"
user
end
# user factory without associated posts
factory :user do
name "John Doe"
# user_with_posts will create post data after the user has been created
factory :user_with_posts do
# posts_count is declared as an ignored attribute and available in
# attributes on the factory, as well as the callback via the evaluator
ignore do
posts_count 5
end
# the after_create yields two values; the user instance itself and the
# evaluator, which stores all values from the factory, including ignored
# attributes; `create_list`'s second argument is the number of records
# to create and we make sure the user is associated properly to the post
after_create do |user, evaluator|
FactoryGirl.create_list(:post, evaluator.posts_count, user: user)
end
end
end
end
This allows us to do:
FactoryGirl.create(:user).posts.length # 0
FactoryGirl.create(:user_with_posts).posts.length # 5
FactoryGirl.create(:user_with_posts, posts_count: 15).posts.length # 15
Inheritance
You can easily create multiple factories for the same class without repeating common attributes by nesting factories:
factory :post do
title "A title"
factory :approved_post do
approved true
end
end
approved_post = FactoryGirl.create(:approved_post)
approved_post.title # => "A title"
approved_post.approved # => true
You can also assign the parent explicitly:
factory :post do
title "A title"
end
factory :approved_post, parent: :post do
approved true
end
As mentioned above, it's good practice to define a basic factory for each class with only the attributes required to create it. Then, create more specific factories that inherit from this basic parent. Factory definitions are still code, so keep them DRY.
Sequences
Unique values in a specific format (for example, e-mail addresses) can be generated using sequences. Sequences are defined by calling sequence in a definition block, and values in a sequence are generated by calling FactoryGirl.generate:
# Defines a new sequence
FactoryGirl.define do
sequence :email do |n|
"person#{n}@example.com"
end
end
FactoryGirl.generate :email
# => "person1@example.com"
FactoryGirl.generate :email
# => "person2@example.com"
Sequences can be used as attributes:
factory :user do
email
end
Or in lazy attributes:
factory :invite do
invitee { generate(:email) }
end
And it's also possible to define an in-line sequence that is only used in a particular factory:
factory :user do
sequence(:email) {|n| "person#{n}@example.com" }
end
You can also override the initial value:
factory :user do
sequence(:email, 1000) {|n| "person#{n}@example.com" }
end
Without a block, the value will increment itself, starting at its initial value:
factory :post do
sequence(:position)
end
Sequences can also have aliases. The sequence aliases share the same counter:
factory :user do
sequence(:email, 1000, aliases: [:sender, :receiver]) {|n| "person#{n}@example.com" }
end
# will increase value counter for :email which is shared by :sender and :receiver
FactoryGirl.next(:sender)
Define aliases and use default value (1) for the counter
factory :user do
sequence(:email, aliases: [:sender, :receiver]) {|n| "person#{n}@example.com" }
end
Setting the value:
factory :user do
sequence(:email, 'a', aliases: [:sender, :receiver]) {|n| "person#{n}@example.com" }
end
The value just needs to support the #next
method. Here the next value will be 'a', then 'b', etc.
Traits
Traits allow you to group attributes together and then apply them to any factory.
factory :user, aliases: [:author]
factory :story do
title "My awesome story"
author
trait :published do
published true
end
trait :unpublished do
published false
end
trait :week_long_publishing do
start_at { 1.week.ago }
end_at { Time.now }
end
trait :month_long_publishing do
start_at { 1.month.ago }
end_at { Time.now }
end
factory :week_long_published_story, traits: [:published, :week_long_publishing]
factory :month_long_published_story, traits: [:published, :month_long_publishing]
factory :week_long_unpublished_story, traits: [:unpublished, :week_long_publishing]
factory :month_long_unpublished_story, traits: [:unpublished, :month_long_publishing]
end
Traits can be used as attributes:
factory :week_long_published_story_with_title, parent: :story do
published
week_long_publishing
title { "Publishing that was started at {start_at}" }
end
Traits that define the same attributes won't raise AttributeDefinitionErrors; the trait that defines the attribute latest gets precedence.
factory :user do
name "Friendly User"
login { name }
trait :male do
name "John Doe"
gender "Male"
login { "#{name} (M)" }
end
trait :female do
name "Jane Doe"
gender "Female"
login { "#{name} (F)" }
end
trait :admin do
admin true
login { "admin-#{name}" }
end
factory :male_admin, traits: [:male, :admin] # login will be "admin-John Doe"
factory :female_admin, traits: [:admin, :female] # login will be "Jane Doe (F)"
end
You can also override individual attributes granted by a trait in subclasses.
factory :user do
name "Friendly User"
login { name }
trait :male do
name "John Doe"
gender "Male"
login { "#{name} (M)" }
end
factory :brandon do
male
name "Brandon"
end
end
Traits can also be passed in as a list of symbols when you construct an instance from FactoryGirl.
factory :user do
name "Friendly User"
trait :male do
name "John Doe"
gender "Male"
end
trait :admin do
admin true
end
end
# creates an admin user with gender "Male" and name "Jon Snow"
FactoryGirl.create(:user, :admin, :male, name: "Jon Snow")
This ability works with build
, build_stubbed
, attributes_for
, and create
.
create_list
and build_list
methods are supported as well. Just remember to pass
the number of instances to create/build as second parameter, as documented in the
"Building or Creating Multiple Records" section of this file.
factory :user do
name "Friendly User"
trait :admin do
admin true
end
end
# creates 3 admin users with gender "Male" and name "Jon Snow"
FactoryGirl.create_list(:user, 3, :admin, :male, name: "Jon Snow")
Callbacks
factory_girl makes available three callbacks for injecting some code:
- after_build - called after a factory is built (via FactoryGirl.build)
- after_create - called after a factory is saved (via FactoryGirl.create)
- after_stub - called after a factory is stubbed (via FactoryGirl.build_stubbed)
Examples:
# Define a factory that calls the generate_hashed_password method after it is built
factory :user do
after_build { |user| generate_hashed_password(user) }
end
Note that you'll have an instance of the user in the block. This can be useful.
You can also define multiple types of callbacks on the same factory:
factory :user do
after_build { |user| do_something_to(user) }
after_create { |user| do_something_else_to(user) }
end
Factories can also define any number of the same kind of callback. These callbacks will be executed in the order they are specified:
factory :user do
after_create { this_runs_first }
after_create { then_this }
end
Calling FactoryGirl.create will invoke both after_build and after_create callbacks.
Also, like standard attributes, child factories will inherit (and can also define) callbacks from their parent factory.
Modifying factories
If you're given a set of factories (say, from a gem developer) but want to change them to fit into your application better, you can modify that factory instead of creating a child factory and adding attributes there.
If a gem were to give you a User factory:
FactoryGirl.define do
factory :user do
full_name "John Doe"
sequence(:username) {|n| "user#{n}" }
password "password"
end
end
Instead of creating a child factory that added additional attributes:
FactoryGirl.define do
factory :application_user, parent: :user do
full_name { Faker::Name.name }
date_of_birth { 21.years.ago }
gender "Female"
health 90
end
end
You could modify that factory instead.
FactoryGirl.modify do
factory :user do
full_name { Faker::Name.name }
date_of_birth { 21.years.ago }
gender "Female"
health 90
end
end
When modifying a factory, you can change any of the attributes you want (aside from callbacks).
FactoryGirl.modify
must be called outside of a FactoryGirl.define
block as it operates on factories differently.
A caveat: you can only modify factories (not sequences or traits) and callbacks still compound as they normally would. So, if
the factory you're modifying defines an after_create
callback, you defining an after_create
won't override it, it'll just get run after the first callback.
Building or Creating Multiple Records
Sometimes, you'll want to create or build multiple instances of a factory at once.
built_users = FactoryGirl.build_list(:user, 25)
created_users = FactoryGirl.create_list(:user, 25)
These methods will build or create a specific amount of factories and return them as an array. To set the attributes for each of the factories, you can pass in a hash as you normally would.
twenty_year_olds = FactoryGirl.build_list(:user, 25, date_of_birth: 20.years.ago)
Custom Construction
If you want to use factory_girl to construct an object where some attributes
are passed to initialize
or if you want to do something other than simply
calling new
on your build class, you can override the default behavior by
defining initialize_with
on your factory. Example:
# user.rb
class User
attr_accessor :name, :email
def initialize(name)
@name = name
end
end
# factories.rb
sequence(:name) {|n| "person#{n}@example.com" }
factory :user do
ignore do
name { Faker::Name.name }
end
email
initialize_with { User.new(name) }
end
FactoryGirl.build(:user).name # Bob Hope
Notice that I ignored the name
attribute. If you don't want attributes
reassigned after your object has been instantiated, you'll want to ignore
them.
Although factory_girl is written to work with ActiveRecord out of the box, it can also work with any Ruby class. For maximum compatibiltiy with ActiveRecord, the default initializer builds all instances by calling new on your build class without any arguments. It then calls attribute writer methods to assign all the attribute values. While that works fine for ActiveRecord, it actually doesn't work for almost any other Ruby class.
You can override the initializer in order to:
- Build non-ActiveRecord objects that require arguments to
initialize
- Use a method other than
new
to instantiate the instance - Do crazy things like decorate the instance after it's built
Custom Strategies
There are times where you may want to extend behavior of factory_girl by adding a custom build strategy.
Strategies define two methods: association
and result
. association
receives a FactoryGirl::FactoryRunner
instance, upon which you can call
run
, overriding the strategy if you want. The second method, result
,
receives a FactoryGirl::Evaluation
instance. It provides a way to trigger
callbacks (with notify
), object
or hash
(to get the result instance or a
hash based on the attributes defined in the factory), and create
, which
executes the to_create
callback defined on the factory.
To understand how factory_girl uses strategies internally, it's probably easiest to just view the source for each of the four default strategies.
Inheritance can occasionally be useful; here's an example of inheriting from
FactoryGirl::Strategy::Create
to build a JSON representation of your model.
class JsonStrategy < FactoryGirl::Strategy::Create
def result(evaluation)
super.to_json
end
end
For factory_girl to recognize the new strategy, you can register it:
FactoryGirl.register_strategy(:json, JsonStrategy)
This allows you to call
FactoryGirl.json(:user)
Finally, you can override factory_girl's own strategies if you'd like by registering a new object in place of the strategies.
Custom Methods to Persist Objects
By default, creating a record will call save!
on the instance; since this
may not always be ideal, you can override that behavior by defining
to_create
on the factory:
factory :different_orm_model do
to_create {|instance| instance.persist! }
end
To disable the persistence method altogether on create, you can skip_create
for that factory:
factory :user_without_database do
skip_create
end
Cucumber Integration
factory_girl ships with step definitions that make calling factories from Cucumber easier. To use them, add the following to features/support/env.rb:
require "factory_girl/step_definitions"
Alternate Syntaxes
Users' tastes for syntax vary dramatically, but most users are looking for a common feature set. Because of this factory_girl supports "syntax layers" which provide alternate interfaces. See Factory::Syntax for information about the various layers available. For example, the Machinist-style syntax is popular:
require "factory_girl/syntax/blueprint"
require "factory_girl/syntax/make"
require "factory_girl/syntax/sham"
Sham.email {|n| "#{n}@example.com" }
User.blueprint do
name { "Billy Bob" }
email { Sham.email }
end
User.make(name: "Johnny")