13 KiB
stage | group | info |
---|---|---|
none | unassigned | To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/product/ux/technical-writing/#assignments |
Working with the GitHub importer
In GitLab 10.2 a new version of the GitHub importer was introduced. This new importer performs its work in parallel using Sidekiq, greatly reducing the time necessary to import GitHub projects into a GitLab instance.
The GitHub importer offers two different types of importers: a sequential
importer and a parallel importer. The Rake task import:github
uses the
sequential importer, while everything else uses the parallel importer. The
difference between these two importers is quite simple: the sequential importer
does all work in a single thread, making it more useful for debugging purposes
or Rake tasks. The parallel importer, on the other hand, uses Sidekiq.
Requirements
- GitLab CE 10.2.0 or newer.
- Sidekiq workers that process the
github_importer
andgithub_importer_advance_stage
queues (this is enabled by default). - Octokit (used for interacting with the GitHub API).
Code structure
The importer's codebase is broken up into the following directories:
lib/gitlab/github_import
: this directory contains most of the code such as the classes used for importing resources.app/workers/gitlab/github_import
: this directory contains the Sidekiq workers.app/workers/concerns/gitlab/github_import
: this directory contains a few modules reused by the various Sidekiq workers.
Architecture overview
When a GitHub project is imported, we schedule and execute a job for the
RepositoryImportWorker
worker as all other importers. However, unlike other
importers, we don't immediately perform the work necessary. Instead work is
divided into separate stages, with each stage consisting out of a set of Sidekiq
jobs that are executed. Between every stage a job is scheduled that periodically
checks if all work of the current stage is completed, advancing the import
process to the next stage when this is the case. The worker handling this is
called Gitlab::GithubImport::AdvanceStageWorker
.
Stages
1. RepositoryImportWorker
This worker starts the import process by scheduling a job for the next worker.
2. Stage::ImportRepositoryWorker
This worker imports the repository and wiki, scheduling the next stage when done.
3. Stage::ImportBaseDataWorker
This worker imports base data such as labels, milestones, and releases. This work is done in a single thread because it can be performed fast enough that we don't need to perform this work in parallel.
4. Stage::ImportPullRequestsWorker
This worker imports all pull requests. For every pull request a job for the
Gitlab::GithubImport::ImportPullRequestWorker
worker is scheduled.
5. Stage::ImportPullRequestsMergedByWorker
This worker imports the pull requests' merged-by user information. The
List pull requests
API doesn't provide this information. Therefore, this stage must fetch each merged pull request
individually to import this information. A
Gitlab::GithubImport::ImportPullRequestMergedByWorker
job is scheduled for each fetched pull
request.
6. Stage::ImportPullRequestsReviewsWorker
This worker imports the pull requests' reviews. For each pull request, this worker:
- Fetches all the pages of reviews.
- Schedules a
Gitlab::GithubImport::ImportPullRequestReviewWorker
job for each fetched review.
7. Stage::ImportIssuesAndDiffNotesWorker
This worker imports all issues and pull request comments. For every issue, we
schedule a job for the Gitlab::GithubImport::ImportIssueWorker
worker. For
pull request comments, we instead schedule jobs for the
Gitlab::GithubImport::DiffNoteImporter
worker.
This worker processes both issues and diff notes in parallel so we don't need to schedule a separate stage and wait for the previous one to complete.
Issues are imported separately from pull requests because only the "issues" API includes labels for both issue and pull requests. Importing issues and setting label links in the same worker removes the need for performing a separate crawl through the API data, reducing the number of API calls necessary to import a project.
8. Stage::ImportIssueEventsWorker
This worker imports all issues and pull request events. For every event, we
schedule a job for the Gitlab::GithubImport::ImportIssueEventWorker
worker.
We can import both issues and pull request events by single stage because of a specific aspect of the GitHub API. It looks like that under the hood, issues and pull requests GitHub are stored in a single table. Therefore, they have globally-unique IDs and so:
- Every pull request is an issue.
- Issues aren't pull requests.
Therefore, both issues and pull requests have a common API for most related things.
9. Stage::ImportNotesWorker
This worker imports regular comments for both issues and pull requests. For
every comment, we schedule a job for the
Gitlab::GithubImport::ImportNoteWorker
worker.
Regular comments have to be imported at the end because the GitHub API used returns comments for both issues and pull requests. This means we have to wait for all issues and pull requests to be imported before we can import regular comments.
10. Stage::ImportAttachmentsWorker
This worker imports release notes attachments that are linked inside Markdown.
For every release of the project, we schedule a job of
Gitlab::GithubImport::ImportReleaseAttachmentsWorker
for every comment.
Each job:
- Iterates over all attachment links inside of a specific release note.
- Downloads the attachment.
- Replaces the old link with a newly-generated link to GitLab.
11. Stage::ImportProtectedBranchesWorker
This worker imports protected branch rules.
For every rule that exists on GitHub, we schedule a job of
Gitlab::GithubImport::ImportProtectedBranchWorker
.
Each job compares the branch protection rules from GitHub and GitLab and applies the strictest of the rules to the branches in GitLab.
12. Stage::FinishImportWorker
This worker completes the import process by performing some housekeeping (such as flushing any caches) and by marking the import as completed.
Advancing stages
Advancing stages is done in one of two ways:
- Scheduling the worker for the next stage directly.
- Scheduling a job for
Gitlab::GithubImport::AdvanceStageWorker
which will advance the stage when all work of the current stage has been completed.
The first approach should only be used by workers that perform all their work in
a single thread, while AdvanceStageWorker
should be used for everything else.
The way AdvanceStageWorker
works is fairly simple. When scheduling a job it
is given a project ID, a list of Redis keys, and the name of the next
stage. The Redis keys (produced by Gitlab::JobWaiter
) are used to check if the
currently running stage has been completed or not. If the stage has not yet been
completed AdvanceStageWorker
reschedules itself. After a stage finishes
AdvanceStageworker
refreshes the import JID (more on this below) and
schedule the worker of the next stage.
To reduce the number of AdvanceStageWorker
jobs scheduled this worker
briefly waits for jobs to complete before deciding what the next action should
be. For small projects, this may slow down the import process a bit, but it
also reduces pressure on the system as a whole.
Refreshing import JIDs
GitLab includes a worker called Gitlab::Import::StuckProjectImportJobsWorker
that periodically runs and marks project imports as failed if they have been
running for more than 15 hours. For GitHub projects, this poses a bit of a
problem: importing large projects could take several hours depending on how
often we hit the GitHub rate limit (more on this below), but we don't want
Gitlab::Import::StuckProjectImportJobsWorker
to mark our import as failed because of this.
To prevent this from happening we periodically refresh the expiration time of
the import process. This works by storing the JID of the import job in the
database, then refreshing this JID's TTL at various stages throughout the import
process. This is done by calling ProjectImportState#refresh_jid_expiration
. By
refreshing this TTL we can ensure our import does not get marked as failed so
long we're still performing work.
GitHub rate limit
GitHub has a rate limit of 5,000 API calls per hour. The number of requests necessary to import a project is largely dominated by the number of unique users involved in a project (for example, issue authors). Other data such as issue pages and comments typically only requires a few dozen requests to import. This is because we need the Email address of users in order to map them to GitLab users.
We handle this by doing the following:
- After we hit the rate limit all jobs automatically reschedule themselves in such a way that they are not executed until the rate limit has been reset.
- We cache the mapping of GitHub users to GitLab users in Redis.
More information on user caching can be found below.
Caching user lookups
When mapping GitHub users to GitLab users we need to (in the worst case) perform:
- One API call to get the user's Email address.
- Two database queries to see if a corresponding GitLab user exists. One query tries to find the user based on the GitHub user ID, while the second query is used to find the user using their GitHub Email address.
To avoid mismatching users, the search by GitHub user ID is not done when importing from GitHub Enterprise.
Because this process is quite expensive we cache the result of these lookups in Redis. For every user looked up we store three keys:
- A Redis key mapping GitHub usernames to their Email addresses.
- A Redis key mapping a GitHub Email addresses to a GitLab user ID.
- A Redis key mapping a GitHub user ID to GitLab user ID.
There are two types of lookups we cache:
- A positive lookup, meaning we found a GitLab user ID.
- A negative lookup, meaning we didn't find a GitLab user ID. Caching this prevents us from performing the same work for users that we know don't exist in our GitLab database.
The expiration time of these keys is 24 hours. When retrieving the cache of a positive lookup, we refresh the TTL automatically. The TTL of false lookups is never refreshed.
Because of this caching layer, it's possible newly registered GitLab accounts aren't linked to their corresponding GitHub accounts. This, however, is resolved after the cached keys expire.
The user cache lookup is shared across projects. This means that the greater the number of projects that are imported, fewer GitHub API calls are needed.
The code for this resides in:
lib/gitlab/github_import/user_finder.rb
lib/gitlab/github_import/caching.rb
Mapping labels and milestones
To reduce pressure on the database we do not query it when setting labels and milestones on issues and merge requests. Instead, we cache this data when we import labels and milestones, then we reuse this cache when assigning them to issues/merge requests. Similar to the user lookups these cache keys are expired automatically after 24 hours of not being used.
Unlike the user lookup caches, these label and milestone caches are scoped to the project that is being imported.
The code for this resides in:
lib/gitlab/github_import/label_finder.rb
lib/gitlab/github_import/milestone_finder.rb
lib/gitlab/github_import/caching.rb
Logs
- Introduced in GitLab 13.7.
- Number of imported objects introduced in GitLab 14.1.
Gitlab::GithubImport::Logger
introduced in GitLab 14.2.import_source
renamed toimport_type
in GitLab 14.2.
The import progress can be checked in the logs/importer.log
file. Each relevant import is logged
with "import_type": "github"
and the "project_id"
.
The last log entry reports the number of objects fetched and imported:
{
"message": "GitHub project import finished",
"duration_s": 347.25,
"objects_imported": {
"fetched": {
"diff_note": 93,
"issue": 321,
"note": 794,
"pull_request": 108,
"pull_request_merged_by": 92,
"pull_request_review": 81
},
"imported": {
"diff_note": 93,
"issue": 321,
"note": 794,
"pull_request": 108,
"pull_request_merged_by": 92,
"pull_request_review": 81
}
},
"import_source": "github",
"project_id": 47,
"import_stage": "Gitlab::GithubImport::Stage::FinishImportWorker"
}
Errors when importing large projects
The GitHub importer may encounter errors when importing large projects. For help with this, see the documentation for the following use cases:
Metrics dashboards
To assess the GitHub importer health, the GitHub importer dashboard provides information about the total number of objects fetched vs. imported over time.