12 KiB
stage | group | info |
---|---|---|
Analytics | Product Intelligence | To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/product/ux/technical-writing/#assignments |
Metrics instrumentation guide
This guide describes how to develop Service Ping metrics using metrics instrumentation.
For a video tutorial, see the Adding Service Ping metric via instrumentation class.
Nomenclature
-
Instrumentation class:
- Inherits one of the metric classes:
DatabaseMetric
,RedisMetric
,RedisHLLMetric
,NumbersMetric
orGenericMetric
. - Implements the logic that calculates the value for a Service Ping metric.
- Inherits one of the metric classes:
-
Metric definition The Service Data metric YAML definition.
-
Hardening: Hardening a method is the process that ensures the method fails safe, returning a fallback value like -1.
How it works
A metric definition has the instrumentation_class
field, which can be set to a class.
The defined instrumentation class should inherit one of the existing metric classes: DatabaseMetric
, RedisMetric
, RedisHLLMetric
, NumbersMetric
or GenericMetric
.
The current convention is that a single instrumentation class corresponds to a single metric. On rare occasions, there are exceptions to that convention like Redis metrics. To use a single instrumentation class for more than one metric, please reach out to one of the @gitlab-org/analytics-section/product-intelligence/engineers
members to consult about your case.
Using the instrumentation classes ensures that metrics can fail safe individually, without breaking the entire process of Service Ping generation.
We have built a domain-specific language (DSL) to define the metrics instrumentation.
Database metrics
You can use database metrics to track data kept in the database, for example, a count of issues that exist on a given instance.
operation
: Operations for the givenrelation
, one ofcount
,distinct_count
,sum
, andaverage
.relation
:ActiveRecord::Relation
for the objects we want to perform theoperation
.start
: Specifies the start value of the batch counting, by default isrelation.minimum(:id)
.finish
: Specifies the end value of the batch counting, by default isrelation.maximum(:id)
.cache_start_and_finish_as
: Specifies the cache key forstart
andfinish
values and sets up caching them. Use this call whenstart
andfinish
are expensive queries that should be reused between different metric calculations.available?
: Specifies whether the metric should be reported. The default istrue
.timestamp_column
: Optionally specifies timestamp column for metric used to filter records for time constrained metrics. The default iscreated_at
.
Example of a merge request that adds a database metric.
module Gitlab
module Usage
module Metrics
module Instrumentations
class CountBoardsMetric < DatabaseMetric
operation :count
relation { Board }
end
end
end
end
end
Ordinary batch counters Example
module Gitlab
module Usage
module Metrics
module Instrumentations
class CountIssuesMetric < DatabaseMetric
operation :count
start { Issue.minimum(:id) }
finish { Issue.maximum(:id) }
relation { Issue }
end
end
end
end
end
Distinct batch counters Example
# frozen_string_literal: true
module Gitlab
module Usage
module Metrics
module Instrumentations
class CountUsersAssociatingMilestonesToReleasesMetric < DatabaseMetric
operation :distinct_count, column: :author_id
relation { Release.with_milestones }
start { Release.minimum(:author_id) }
finish { Release.maximum(:author_id) }
end
end
end
end
end
Sum Example
# frozen_string_literal: true
module Gitlab
module Usage
module Metrics
module Instrumentations
class JiraImportsTotalImportedIssuesCountMetric < DatabaseMetric
operation :sum, column: :imported_issues_count
relation { JiraImportState.finished }
end
end
end
end
end
Average Example
# frozen_string_literal: true
module Gitlab
module Usage
module Metrics
module Instrumentations
class CountIssuesWeightAverageMetric < DatabaseMetric
operation :average, column: :weight
relation { Issue }
end
end
end
end
end
Redis metrics
You can use Redis metrics to track events not kept in the database, for example, a count of how many times the search bar has been used.
Example of a merge request that adds a Redis
metric.
Please note that RedisMetric
class can only be used as the instrumentation_class
for Redis metrics with simple counters classes (classes that only inherit BaseCounter
and set PREFIX
and KNOWN_EVENTS
constants). In case the counter class has additional logic included in it, a new instrumentation_class
, inheriting from RedisMetric
, needs to be created. This new class needs to include the additional logic from the counter class.
Count unique values for source_code_pushes
event.
Required options:
event
: the event name.prefix
: the value of thePREFIX
constant used in the counter classes from theGitlab::UsageDataCounters
namespace.
time_frame: all
data_source: redis
instrumentation_class: RedisMetric
options:
event: pushes
prefix: source_code
Availability-restrained Redis metrics
If the Redis metric should only be available in the report under some conditions, then you must specify these conditions in a new class that is a child of the RedisMetric
class.
# frozen_string_literal: true
module Gitlab
module Usage
module Metrics
module Instrumentations
class MergeUsageCountRedisMetric < RedisMetric
available? { Feature.enabled?(:merge_usage_data_missing_key_paths) }
end
end
end
end
end
You must also use the class's name in the YAML setup.
time_frame: all
data_source: redis
instrumentation_class: MergeUsageCountRedisMetric
options:
event: pushes
prefix: source_code
Redis HyperLogLog metrics
You can use Redis HyperLogLog metrics to track events not kept in the database and incremented for unique values such as unique users, for example, a count of how many different users used the search bar.
Example of a merge request that adds a RedisHLL
metric.
Count unique values for i_quickactions_approve
event.
time_frame: 28d
data_source: redis_hll
instrumentation_class: RedisHLLMetric
options:
events:
- i_quickactions_approve
Availability-restrained Redis HyperLogLog metrics
If the Redis HyperLogLog metric should only be available in the report under some conditions, then you must specify these conditions in a new class that is a child of the RedisHLLMetric
class.
# frozen_string_literal: true
module Gitlab
module Usage
module Metrics
module Instrumentations
class MergeUsageCountRedisHLLMetric < RedisHLLMetric
available? { Feature.enabled?(:merge_usage_data_missing_key_paths) }
end
end
end
end
end
You must also use the class's name in the YAML setup.
time_frame: 28d
data_source: redis_hll
instrumentation_class: MergeUsageCountRedisHLLMetric
options:
events:
- i_quickactions_approve
Numbers metrics
operation
: Operations for the givendata
block. Currently we only supportadd
operation.data
: ablock
which contains an array of numbers.available?
: Specifies whether the metric should be reported. The default istrue
.
# frozen_string_literal: true
module Gitlab
module Usage
module Metrics
module Instrumentations
class IssuesBoardsCountMetric < NumbersMetric
operation :add
data do |time_frame|
[
CountIssuesMetric.new(time_frame: time_frame).value,
CountBoardsMetric.new(time_frame: time_frame).value
]
end
end
end
end
end
end
end
You must also include the instrumentation class name in the YAML setup.
time_frame: 28d
instrumentation_class: IssuesBoardsCountMetric
Generic metrics
You can use generic metrics for other metrics, for example, an instance's database version. Observations type of data will always have a Generic metric counter type.
value
: Specifies the value of the metric.available?
: Specifies whether the metric should be reported. The default istrue
.
Example of a merge request that adds a generic metric.
module Gitlab
module Usage
module Metrics
module Instrumentations
class UuidMetric < GenericMetric
value do
Gitlab::CurrentSettings.uuid
end
end
end
end
end
end
Support for instrumentation classes
There is support for:
count
,distinct_count
,estimate_batch_distinct_count
,sum
, andaverage
for database metrics.- Redis metrics.
- Redis HLL metrics.
add
for numbers metrics.- Generic metrics, which are metrics based on settings or configurations.
There is no support for:
add
,histogram
for database metrics.
You can track the progress to support these.
Create a new metric instrumentation class
To create a stub instrumentation for a Service Ping metric, you can use a dedicated generator:
The generator takes the class name as an argument and the following options:
--type=TYPE
Required. Indicates the metric type. It must be one of:database
,generic
,redis
,numbers
.--operation
Required fordatabase
&numbers
type.- For
database
it must be one of:count
,distinct_count
,estimate_batch_distinct_count
,sum
,average
. - For
numbers
it must be:add
.
- For
--ee
Indicates if the metric is for EE.
rails generate gitlab:usage_metric CountIssues --type database --operation distinct_count
create lib/gitlab/usage/metrics/instrumentations/count_issues_metric.rb
create spec/lib/gitlab/usage/metrics/instrumentations/count_issues_metric_spec.rb
Migrate Service Ping metrics to instrumentation classes
This guide describes how to migrate a Service Ping metric from lib/gitlab/usage_data.rb
or ee/lib/ee/gitlab/usage_data.rb
to instrumentation classes.
- Choose the metric type:
-
Determine the location of instrumentation class: either under
ee
or outsideee
. -
Fill the instrumentation class body:
- Add code logic for the metric. This might be similar to the metric implementation in
usage_data.rb
. - Add tests for the individual metric
spec/lib/gitlab/usage/metrics/instrumentations/
. - Add tests for Service Ping.
- Add code logic for the metric. This might be similar to the metric implementation in
-
Remove the code from
lib/gitlab/usage_data.rb
oree/lib/ee/gitlab/usage_data.rb
. -
Remove the tests from
spec/lib/gitlab/usage_data.rb
oree/spec/lib/ee/gitlab/usage_data.rb
.