i3lock-color/blur_simd.c

106 lines
4.2 KiB
C
Raw Normal View History

/*
* vim:ts=4:sw=4:expandtab
*
* © 2016 Sebastian Frysztak
*
* See LICENSE for licensing information
*
*/
#include "blur.h"
#include <math.h>
#include <xmmintrin.h>
#define ALIGN16 __attribute__((aligned(16)))
#define KERNEL_SIZE 7
2016-11-11 17:45:20 +00:00
#define SIGMA_AV 2
#define HALF_KERNEL KERNEL_SIZE / 2
2016-10-28 15:35:33 +00:00
// number of xmm registers needed to store
// input pixels for given kernel size
#define REGISTERS_CNT (KERNEL_SIZE + 4/2) / 4
void blur_impl_sse2(uint32_t *src, uint32_t *dst, int width, int height, float sigma) {
2016-11-11 17:45:20 +00:00
// according to a paper by Peter Kovesi [1], box filter of width w, equals to Gaussian blur of following sigma:
// σ_av = sqrt((w*w-1)/12)
// for our 7x7 filter we have σ_av = 2.0.
// applying the same Gaussian filter n times results in σ_n = sqrt(n*σ_av*σ_av) [2]
// after some trivial math, we arrive at n = ((σ_d)/(σ_av))^2
// since it's a box blur filter, n >= 3
//
// [1]: http://www.peterkovesi.com/papers/FastGaussianSmoothing.pdf
// [2]: https://en.wikipedia.org/wiki/Gaussian_blur#Mathematics
int n = lrintf((sigma*sigma)/(SIGMA_AV*SIGMA_AV));
if (n < 3) n = 3;
for (int i = 0; i < n; i++)
{
// horizontal pass includes image transposition:
// instead of writing pixel src[x] to dst[x],
// we write it to transposed location.
// (to be exact: dst[height * current_column + current_row])
blur_impl_horizontal_pass_sse2(src, dst, width, height);
blur_impl_horizontal_pass_sse2(dst, src, height, width);
}
}
2016-11-11 17:45:20 +00:00
void blur_impl_horizontal_pass_sse2(uint32_t *src, uint32_t *dst, int width, int height) {
for (int row = 0; row < height; row++) {
for (int column = 0; column < width; column++, src++) {
2016-10-28 15:35:33 +00:00
__m128i rgbaIn[REGISTERS_CNT];
// handle borders
int leftBorder = column < HALF_KERNEL;
int rightBorder = column > width - HALF_KERNEL;
uint32_t _rgbaIn[KERNEL_SIZE] ALIGN16;
int i = 0;
if (leftBorder) {
// for kernel size 7x7 and column == 0, we have:
// x x x P0 P1 P2 P3
// first loop mirrors P{0..3} to fill x's,
// second one loads P{0..3}
for (; i < HALF_KERNEL - column; i++)
_rgbaIn[i] = *(src + (HALF_KERNEL - i));
for (; i < KERNEL_SIZE; i++)
_rgbaIn[i] = *(src - (HALF_KERNEL - i));
for (int k = 0; k < REGISTERS_CNT; k++)
rgbaIn[k] = _mm_load_si128((__m128i*)(_rgbaIn + 4*k));
} else if (rightBorder) {
for (; i < width - column; i++)
_rgbaIn[i] = *(src + i);
for (int k = 0; i < KERNEL_SIZE; i++, k++)
_rgbaIn[i] = *(src - k);
2016-10-28 15:35:33 +00:00
for (int k = 0; k < REGISTERS_CNT; k++)
rgbaIn[k] = _mm_load_si128((__m128i*)(_rgbaIn + 4*k));
} else {
2016-10-28 15:35:33 +00:00
for (int k = 0; k < REGISTERS_CNT; k++)
rgbaIn[k] = _mm_loadu_si128((__m128i*)(src + 4*k - HALF_KERNEL));
}
__m128i zero = _mm_setzero_si128();
2016-11-05 15:01:40 +00:00
__m128i acc = _mm_setzero_si128();
acc = _mm_add_epi16(acc, _mm_unpacklo_epi8(rgbaIn[0], zero));
acc = _mm_add_epi16(acc, _mm_unpackhi_epi8(rgbaIn[0], zero));
acc = _mm_add_epi16(acc, _mm_unpacklo_epi8(rgbaIn[1], zero));
// kernel size equals to 7, but we can only load multiples of 4 pixels
// we have to set 8th pixel to zero
acc = _mm_add_epi16(acc, _mm_andnot_si128(_mm_set_epi32(0xFFFFFFFF, 0xFFFFFFFF, 0, 0),
_mm_unpackhi_epi8(rgbaIn[1], zero)));
acc = _mm_add_epi32(_mm_unpacklo_epi16(acc, zero),
_mm_unpackhi_epi16(acc, zero));
2016-11-11 17:45:20 +00:00
// multiplication is significantly faster than division
2016-11-05 15:01:40 +00:00
acc = _mm_cvtps_epi32(_mm_mul_ps(_mm_cvtepi32_ps(acc),
_mm_set1_ps(1/((float)KERNEL_SIZE))));
2016-11-05 15:01:40 +00:00
*(dst + height * column + row) =
_mm_cvtsi128_si32(_mm_packus_epi16(_mm_packs_epi32(acc, zero), zero));
}
}
}