Jump To …

nodes.coffee

#

nodes.coffee contains all of the node classes for the syntax tree. Most nodes are created as the result of actions in the grammar, but some are created by other nodes as a method of code generation. To convert the syntax tree into a string of JavaScript code, call compile() on the root.

#

Set up for both Node.js and the browser, by including the Scope class and the helper functions.

if process?
  Scope:   require('./scope').Scope
  helpers: require('./helpers').helpers
else
  this.exports: this
  helpers:      this.helpers
  Scope:        this.Scope
#

Import the helpers we plan to use.

{compact, flatten, merge, del, include, indexOf, starts}: helpers
#

BaseNode

#

The BaseNode is the abstract base class for all nodes in the syntax tree. Each subclass implements the compileNode method, which performs the code generation for that node. To compile a node to JavaScript, call compile on it, which wraps compileNode in some generic extra smarts, to know when the generated code needs to be wrapped up in a closure. An options hash is passed and cloned throughout, containing information about the environment from higher in the tree (such as if a returned value is being requested by the surrounding function), information about the current scope, and indentation level.

exports.BaseNode: class BaseNode
#

Common logic for determining whether to wrap this node in a closure before compiling it, or to compile directly. We need to wrap if this node is a statement, and it's not a pureStatement, and we're not at the top level of a block (which would be unnecessary), and we haven't already been asked to return the result (because statements know how to return results).

If a Node is topSensitive, that means that it needs to compile differently depending on whether it's being used as part of a larger expression, or is a top-level statement within the function body.

  compile: (o) ->
    @options: merge o or {}
    @tab:     o.indent
    unless this instanceof ValueNode or this instanceof CallNode
      del @options, 'operation'
      del @options, 'chainRoot' unless this instanceof AccessorNode or this instanceof IndexNode
    top:      if @topSensitive() then @options.top else del @options, 'top'
    closure:  @isStatement() and not @isPureStatement() and not top and
              not @options.asStatement and
              not @containsPureStatement()
    if closure then @compileClosure(@options) else @compileNode(@options)
#

Statements converted into expressions via closure-wrapping share a scope object with their parent closure, to preserve the expected lexical scope.

  compileClosure: (o) ->
    @tab: o.indent
    o.sharedScope: o.scope
    ClosureNode.wrap(this).compile o
#

If the code generation wishes to use the result of a complex expression in multiple places, ensure that the expression is only ever evaluated once, by assigning it to a temporary variable.

  compileReference: (o, options) ->
    pair: if not (this instanceof CallNode or this instanceof ValueNode and
        (not (@base instanceof LiteralNode) or @hasProperties()))
      [this, this]
    else
      reference: literal o.scope.freeVariable()
      compiled:  new AssignNode reference, this
      [compiled, reference]
    return pair unless options and options.precompile
    [pair[0].compile(o), pair[1].compile(o)]
#

Convenience method to grab the current indentation level, plus tabbing in.

  idt: (tabs) ->
    idt: @tab or ''
    num: (tabs or 0) + 1
    idt: + TAB while num: - 1
    idt
#

Construct a node that returns the current node's result. Note that this is overridden for smarter behavior for many statement nodes (eg IfNode, ForNode)...

  makeReturn: ->
    new ReturnNode this
#

Does this node, or any of its children, contain a node of a certain kind? Recursively traverses down the children of the nodes, yielding to a block and returning true when the block finds a match. contains does not cross scope boundaries.

  contains: (block) ->
    contains: false
    @traverseChildren false, (node) ->
      if block(node)
        contains: true
        return false
    contains
#

Is this node of a certain type, or does it contain the type?

  containsType: (type) ->
    this instanceof type or @contains (n) -> n instanceof type
#

Convenience for the most common use of contains. Does the node contain a pure statement?

  containsPureStatement: ->
    @isPureStatement() or @contains (n) -> n.isPureStatement()
#

Perform an in-order traversal of the AST. Crosses scope boundaries.

  traverse: (block) -> @traverseChildren true, block
#

toString representation of the node, for inspecting the parse tree. This is what coffee --nodes prints out.

  toString: (idt) ->
    idt: or ''
    '\n' + idt + @class + (child.toString(idt + TAB) for child in @collectChildren()).join('')

  eachChild: (func) ->
    return unless @children
    for attr in @children when this[attr]
      for child in flatten [this[attr]]
        return if func(child) is false

  collectChildren: ->
    nodes: []
    @eachChild (node) -> nodes.push node
    nodes

  traverseChildren: (crossScope, func) ->
    @eachChild (child) ->
      func.apply(this, arguments)
      child.traverseChildren(crossScope, func) if child instanceof BaseNode
#

Default implementations of the common node properties and methods. Nodes will override these with custom logic, if needed.

  class:     'BaseNode'
  children: []

  unwrap:            -> this
  isStatement:      -> no
  isPureStatement: -> no
  topSensitive:     -> no
#

Expressions

#

The expressions body is the list of expressions that forms the body of an indented block of code -- the implementation of a function, a clause in an if, switch, or try, and so on...

exports.Expressions: class Expressions extends BaseNode

  class:         'Expressions'
  children:     ['expressions']
  isStatement: -> yes

  constructor: (nodes) ->
    @expressions: compact flatten nodes or []
#

Tack an expression on to the end of this expression list.

  push: (node) ->
    @expressions.push(node)
    this
#

Add an expression at the beginning of this expression list.

  unshift: (node) ->
    @expressions.unshift(node)
    this
#

If this Expressions consists of just a single node, unwrap it by pulling it back out.

  unwrap: ->
    if @expressions.length is 1 then @expressions[0] else this
#

Is this an empty block of code?

  empty: ->
    @expressions.length is 0
#

An Expressions node does not return its entire body, rather it ensures that the final expression is returned.

  makeReturn: ->
    idx:  @expressions.length - 1
    last: @expressions[idx]
    return this if not last or last instanceof ReturnNode
    @expressions[idx]: last.makeReturn()
    this
#

An Expressions is the only node that can serve as the root.

  compile: (o) ->
    o: or {}
    if o.scope then super(o) else @compileRoot(o)

  compileNode: (o) ->
    (@compileExpression(node, merge(o)) for node in @expressions).join("\n")
#

If we happen to be the top-level Expressions, wrap everything in a safety closure, unless requested not to. It would be better not to generate them in the first place, but for now, clean up obvious double-parentheses.

  compileRoot: (o) ->
    o.indent: @tab: if o.noWrap then '' else TAB
    o.scope: new Scope(null, this, null)
    code: if o.globals then @compileNode(o) else @compileWithDeclarations(o)
    code: code.replace(TRAILING_WHITESPACE, '')
    code: code.replace(DOUBLE_PARENS, '($1)')
    if o.noWrap then code else "(function(){\n$code\n})();\n"
#

Compile the expressions body for the contents of a function, with declarations of all inner variables pushed up to the top.

  compileWithDeclarations: (o) ->
    code: @compileNode(o)
    code: "${@tab}var ${o.scope.compiledAssignments()};\n$code"  if o.scope.hasAssignments(this)
    code: "${@tab}var ${o.scope.compiledDeclarations()};\n$code" if o.scope.hasDeclarations(this)
    code
#

Compiles a single expression within the expressions body. If we need to return the result, and it's an expression, simply return it. If it's a statement, ask the statement to do so.

  compileExpression: (node, o) ->
    @tab: o.indent
    compiledNode: node.compile merge o, {top: true}
    if node.isStatement() then compiledNode else "${@idt()}$compiledNode;"
#

Wrap up the given nodes as an Expressions, unless it already happens to be one.

Expressions.wrap: (nodes) ->
  return nodes[0] if nodes.length is 1 and nodes[0] instanceof Expressions
  new Expressions(nodes)
#

LiteralNode

#

Literals are static values that can be passed through directly into JavaScript without translation, such as: strings, numbers, true, false, null...

exports.LiteralNode: class LiteralNode extends BaseNode

  class: 'LiteralNode'

  constructor: (value) ->
    @value: value
#

Break and continue must be treated as pure statements -- they lose their meaning when wrapped in a closure.

  isStatement: ->
    @value is 'break' or @value is 'continue'
  isPureStatement: LiteralNode::isStatement

  compileNode: (o) ->
    idt: if @isStatement() then @idt() else ''
    end: if @isStatement() then ';' else ''
    "$idt$@value$end"

  toString: (idt) ->
    " \"$@value\""
#

ReturnNode

#

A return is a pureStatement -- wrapping it in a closure wouldn't make sense.

exports.ReturnNode: class ReturnNode extends BaseNode

  class:               'ReturnNode'
  isStatement:       -> yes
  isPureStatement:  -> yes
  children:           ['expression']

  constructor: (expression) ->
    @expression: expression

  topSensitive: ->
    true

  makeReturn: ->
    this

  compileNode: (o) ->
    expr: @expression.makeReturn()
    return expr.compile(o) unless expr instanceof ReturnNode
    del o, 'top'
    o.asStatement: true if @expression.isStatement()
    "${@tab}return ${@expression.compile(o)};"
#

ValueNode

#

A value, variable or literal or parenthesized, indexed or dotted into, or vanilla.

exports.ValueNode: class ValueNode extends BaseNode

  SOAK:     " == undefined ? undefined : "

  class:     'ValueNode'
  children: ['base', 'properties']
#

A ValueNode has a base and a list of property accesses.

  constructor: (base, properties) ->
    @base: base
    @properties: (properties or [])
#

Add a property access to the list.

  push: (prop) ->
    @properties.push(prop)
    this

  hasProperties: ->
    !!@properties.length
#

Some boolean checks for the benefit of other nodes.

  isArray: ->
    @base instanceof ArrayNode and not @hasProperties()

  isObject: ->
    @base instanceof ObjectNode and not @hasProperties()

  isSplice: ->
    @hasProperties() and @properties[@properties.length - 1] instanceof SliceNode

  makeReturn: ->
    if @hasProperties() then super() else @base.makeReturn()
#

The value can be unwrapped as its inner node, if there are no attached properties.

  unwrap: ->
    if @properties.length then this else @base
#

Values are considered to be statements if their base is a statement.

  isStatement: ->
    @base.isStatement and @base.isStatement() and not @hasProperties()

  isNumber: ->
    @base instanceof LiteralNode and @base.value.match NUMBER
#

Works out if the value is the start of a chain.

  isStart: (o) ->
    return true if this is o.chainRoot and @properties[0] instanceof AccessorNode
    node: o.chainRoot.base or o.chainRoot.variable
    while node instanceof CallNode then node: node.variable
    node is this
#

We compile a value to JavaScript by compiling and joining each property. Things get much more insteresting if the chain of properties has soak operators ?. interspersed. Then we have to take care not to accidentally evaluate a anything twice when building the soak chain.

  compileNode: (o) ->
    only:         del(o, 'onlyFirst')
    op:           del(o, 'operation')
    props:        if only then @properties[0...@properties.length - 1] else @properties
    o.chainRoot: or this
    baseline:     @base.compile o
    baseline:     "($baseline)" if @hasProperties() and (@base instanceof ObjectNode or @isNumber())
    complete:     @last: baseline

    for prop, i in props
      @source: baseline
      if prop.soakNode
        if @base instanceof CallNode and i is 0
          temp: o.scope.freeVariable()
          complete: "(${ baseline: temp } = ($complete))"
        complete: "typeof $complete === \"undefined\" || $baseline" if i is 0 and @isStart(o)
        complete: + @SOAK + (baseline: + prop.compile(o))
      else
        part: prop.compile(o)
        baseline: + part
        complete: + part
        @last: part

    if op and @wrapped then "($complete)" else complete
#

CallNode

#

Node for a function invocation. Takes care of converting super() calls into calls against the prototype's function of the same name.

exports.CallNode: class CallNode extends BaseNode

  class:     'CallNode'
  children: ['variable', 'args']

  constructor: (variable, args) ->
    @isNew:     false
    @isSuper:   variable is 'super'
    @variable:  if @isSuper then null else variable
    @args:      (args or [])
    @compileSplatArguments: (o) ->
      SplatNode.compileMixedArray.call(this, @args, o)
#

Tag this invocation as creating a new instance.

  newInstance: ->
    @isNew: true
    this

  prefix: ->
    if @isNew then 'new ' else ''
#

Grab the reference to the superclass' implementation of the current method.

  superReference: (o) ->
    methname: o.scope.method.name
    meth: if o.scope.method.proto
      "${o.scope.method.proto}.__superClass__.$methname"
    else if methname
      "${methname}.__superClass__.constructor"
    else throw new Error "cannot call super on an anonymous function."
#

Compile a vanilla function call.

  compileNode: (o) ->
    o.chainRoot: this unless o.chainRoot
    for arg in @args when arg instanceof SplatNode
      compilation: @compileSplat(o)
    unless compilation
      args: (arg.compile(o) for arg in @args).join(', ')
      compilation: if @isSuper then @compileSuper(args, o)
      else "${@prefix()}${@variable.compile(o)}($args)"
    if o.operation and @wrapped then "($compilation)" else compilation
#

super() is converted into a call against the superclass's implementation of the current function.

  compileSuper: (args, o) ->
    "${@superReference(o)}.call(this${ if args.length then ', ' else '' }$args)"
#

If you call a function with a splat, it's converted into a JavaScript .apply() call to allow an array of arguments to be passed.

  compileSplat: (o) ->
    meth: if @variable then @variable.compile(o) else @superReference(o)
    obj:  @variable and @variable.source or 'this'
    if obj.match(/\(/)
      temp: o.scope.freeVariable()
      obj:  temp
      meth: "($temp = ${ @variable.source })${ @variable.last }"
    "${@prefix()}${meth}.apply($obj, ${ @compileSplatArguments(o) })"
#

ExtendsNode

#

Node to extend an object's prototype with an ancestor object. After goog.inherits from the Closure Library.

exports.ExtendsNode: class ExtendsNode extends BaseNode

  class:     'ExtendsNode'
  children: ['child', 'parent']

  constructor: (child, parent) ->
    @child: child
    @parent: parent
#

Hooks one constructor into another's prototype chain.

  compileNode: (o) ->
    ref:  new ValueNode literal utility 'extends'
    (new CallNode ref, [@child, @parent]).compile o
#

AccessorNode

#

A . accessor into a property of a value, or the :: shorthand for an accessor into the object's prototype.

exports.AccessorNode: class AccessorNode extends BaseNode

  class:     'AccessorNode'
  children: ['name']

  constructor: (name, tag) ->
    @name: name
    @prototype: if tag is 'prototype' then '.prototype' else ''
    @soakNode: tag is 'soak'

  compileNode: (o) ->
    name: @name.compile o
    o.chainRoot.wrapped: or @soakNode
    namePart: if name.match(IS_STRING) then "[$name]" else ".$name"
    @prototype + namePart
#

IndexNode

#

A [ ... ] indexed accessor into an array or object.

exports.IndexNode: class IndexNode extends BaseNode

  class:     'IndexNode'
  children: ['index']

  constructor: (index) ->
    @index:     index

  compileNode: (o) ->
    o.chainRoot.wrapped: or @soakNode
    idx: @index.compile o
    prefix: if @proto then '.prototype' else ''
    "$prefix[$idx]"
#

RangeNode

#

A range literal. Ranges can be used to extract portions (slices) of arrays, to specify a range for comprehensions, or as a value, to be expanded into the corresponding array of integers at runtime.

exports.RangeNode: class RangeNode extends BaseNode

  class:     'RangeNode'
  children: ['from', 'to']

  constructor: (from, to, exclusive) ->
    @from: from
    @to: to
    @exclusive: !!exclusive
#

Compiles the range's source variables -- where it starts and where it ends. But only if they need to be cached to avoid double evaluation.

  compileVariables: (o) ->
    [@from, @fromVar]: @from.compileReference o
    [@to, @toVar]:     @to.compileReference o
    parts: []
    parts.push @from.compile o if @from isnt @fromVar
    parts.push @to.compile o if @to isnt @toVar
    if parts.length then "${parts.join('; ')};\n$o.indent" else ''
#

When compiled normally, the range returns the contents of the for loop needed to iterate over the values in the range. Used by comprehensions.

  compileNode: (o) ->
    return    @compileArray(o) unless o.index
    idx:      del o, 'index'
    step:     del o, 'step'
    vars:     "$idx = ${@fromVar.compile(o)}"
    step:     if step then step.compile(o) else '1'
    equals:   if @exclusive then '' else '='
    op:       if starts(step, '-') then ">$equals" else "<$equals"
    "$vars; ${idx} $op ${@toVar.compile(o)}; $idx += $step"
#

When used as a value, expand the range into the equivalent array.

  compileArray: (o) ->
    idt:    @idt 1
    vars:   @compileVariables(merge(o, {indent: idt}))
    equals: if @exclusive then '' else '='
    from:   @fromVar.compile o
    to:     @toVar.compile o
    clause: "$from <= $to ?"
    pre:    "\n${idt}a = [];${vars}"
    body:   "var i = $from; ($clause i <$equals $to : i >$equals $to); ($clause i += 1 : i -= 1)"
    post:   "a.push(i);\n${idt}return a;\n$o.indent"
    "(function(){${pre}for ($body) $post}).call(this)"
#

SliceNode

#

An array slice literal. Unlike JavaScript's Array#slice, the second parameter specifies the index of the end of the slice, just as the first parameter is the index of the beginning.

exports.SliceNode: class SliceNode extends BaseNode

  class:     'SliceNode'
  children: ['range']

  constructor: (range) ->
    @range: range

  compileNode: (o) ->
    from:       @range.from.compile(o)
    to:         @range.to.compile(o)
    plusPart:  if @range.exclusive then '' else ' + 1'
    ".slice($from, $to$plusPart)"
#

ObjectNode

#

An object literal, nothing fancy.

exports.ObjectNode: class ObjectNode extends BaseNode

  class:     'ObjectNode'
  children: ['properties']

  constructor: (props) ->
    @objects: @properties: props or []

  compileNode: (o) ->
    o.indent: @idt 1
    last: @properties.length - 1
    props: for prop, i in @properties
      join:   if i is last then '' else ',\n'
      prop:   new AssignNode prop, prop, 'object' unless prop instanceof AssignNode
      @idt(1) + prop.compile(o) + join
    props: props.join('')
    inner: if props then '\n' + props + '\n' + @idt() else ''
    "{$inner}"
#

ArrayNode

#

An array literal.

exports.ArrayNode: class ArrayNode extends BaseNode

  class:     'ArrayNode'
  children: ['objects']

  constructor: (objects) ->
    @objects: objects or []
    @compileSplatLiteral: (o) ->
      SplatNode.compileMixedArray.call(this, @objects, o)

  compileNode: (o) ->
    o.indent: @idt 1
    objects: []
    for obj, i in @objects
      code: obj.compile(o)
      if obj instanceof SplatNode
        return @compileSplatLiteral @objects, o
      else if i is @objects.length - 1
        objects.push code
      else
        objects.push "$code, "
    objects: objects.join('')
    if indexOf(objects, '\n') >= 0
      "[\n${@idt(1)}$objects\n$@tab]"
    else
      "[$objects]"
#

ClassNode

#

The CoffeeScript class definition.

exports.ClassNode: class ClassNode extends BaseNode

  class:        'ClassNode'
  children:     ['variable', 'parent', 'properties']
  isStatement:  -> yes
#

Initialize a ClassNode with its name, an optional superclass, and a list of prototype property assignments.

  constructor: (variable, parent, props) ->
    @variable: variable
    @parent: parent
    @properties: props or []
    @returns:  false

  makeReturn: ->
    @returns: true
    this
#

Instead of generating the JavaScript string directly, we build up the equivalent syntax tree and compile that, in pieces. You can see the constructor, property assignments, and inheritance getting built out below.

  compileNode: (o) ->
    extension:  @parent and new ExtendsNode(@variable, @parent)
    props:      new Expressions()
    o.top:      true
    me:         null
    className:  @variable.compile o
    constScope: null

    if @parent
      applied: new ValueNode(@parent, [new AccessorNode(literal('apply'))])
      constructor: new CodeNode([], new Expressions([
        new CallNode(applied, [literal('this'), literal('arguments')])
      ]))
    else
      constructor: new CodeNode()

    for prop in @properties
      [pvar, func]: [prop.variable, prop.value]
      if pvar and pvar.base.value is 'constructor' and func instanceof CodeNode
        func.name: className
        func.body.push new ReturnNode literal 'this'
        @variable: new ValueNode @variable
        @variable.namespaced: include func.name, '.'
        constructor: func
        continue
      if func instanceof CodeNode and func.bound
        func.bound: false
        constScope: or new Scope(o.scope, constructor.body, constructor)
        me: or constScope.freeVariable()
        pname: pvar.compile(o)
        constructor.body.push    new ReturnNode literal 'this' if constructor.body.empty()
        constructor.body.unshift literal "this.${pname} = function(){ return ${className}.prototype.${pname}.apply($me, arguments); }"
      if pvar
        access: if prop.context is 'this' then pvar.base.properties[0] else new AccessorNode(pvar, 'prototype')
        val:    new ValueNode(@variable, [access])
        prop:   new AssignNode(val, func)
      props.push prop

    constructor.body.unshift literal "$me = this" if me
    construct: @idt() + (new AssignNode(@variable, constructor)).compile(merge o, {sharedScope: constScope}) + ';\n'
    props:     if props.empty() then '' else props.compile(o) + '\n'
    extension: if extension     then @idt() + extension.compile(o) + ';\n' else ''
    returns:   if @returns      then new ReturnNode(@variable).compile(o)  else ''
    "$construct$extension$props$returns"
#

AssignNode

#

The AssignNode is used to assign a local variable to value, or to set the property of an object -- including within object literals.

exports.AssignNode: class AssignNode extends BaseNode
#

Matchers for detecting prototype assignments.

  PROTO_ASSIGN: /^(\S+)\.prototype/
  LEADING_DOT:  /^\.(prototype\.)?/

  class:     'AssignNode'
  children: ['variable', 'value']

  constructor: (variable, value, context) ->
    @variable: variable
    @value: value
    @context: context

  topSensitive: ->
    true

  isValue: ->
    @variable instanceof ValueNode

  makeReturn: ->
    return new Expressions [this, new ReturnNode(@variable)]

  isStatement: ->
    @isValue() and (@variable.isArray() or @variable.isObject())
#

Compile an assignment, delegating to compilePatternMatch or compileSplice if appropriate. Keep track of the name of the base object we've been assigned to, for correct internal references. If the variable has not been seen yet within the current scope, declare it.

  compileNode: (o) ->
    top:    del o, 'top'
    return  @compilePatternMatch(o) if @isStatement()
    return  @compileSplice(o) if @isValue() and @variable.isSplice()
    stmt:   del o, 'asStatement'
    name:   @variable.compile(o)
    last:   if @isValue() then @variable.last.replace(@LEADING_DOT, '') else name
    match:  name.match(@PROTO_ASSIGN)
    proto:  match and match[1]
    if @value instanceof CodeNode
      @value.name:  last  if last.match(IDENTIFIER)
      @value.proto: proto if proto
    val: @value.compile o
    return "$name: $val" if @context is 'object'
    o.scope.find name unless @isValue() and (@variable.hasProperties() or @variable.namespaced)
    val: "$name = $val"
    return "$@tab$val;" if stmt
    if top then val else "($val)"
#

Brief implementation of recursive pattern matching, when assigning array or object literals to a value. Peeks at their properties to assign inner names. See the ECMAScript Harmony Wiki for details.

  compilePatternMatch: (o) ->
    valVar: o.scope.freeVariable()
    value: if @value.isStatement() then ClosureNode.wrap(@value) else @value
    assigns: ["$@tab$valVar = ${ value.compile(o) };"]
    o.top: true
    o.asStatement: true
    splat: false
    for obj, i in @variable.base.objects
#

A regular array pattern-match.

      idx: i
      if @variable.isObject()
        if obj instanceof AssignNode
#

A regular object pattern-match.

          [obj, idx]: [obj.value, obj.variable.base]
        else
#

A shorthand {a, b, c}: val pattern-match.

          idx: obj
      if not (obj instanceof ValueNode or obj instanceof SplatNode)
        throw new Error 'pattern matching must use only identifiers on the left-hand side.'
      isString: idx.value and idx.value.match IS_STRING
      accessClass: if isString or @variable.isArray() then IndexNode else AccessorNode
      if obj instanceof SplatNode and not splat
        val: literal(obj.compileValue(o, valVar,
          (oindex: indexOf(@variable.base.objects, obj)),
          (olength: @variable.base.objects.length) - oindex - 1))
        splat: true
      else
        idx: literal(if splat then "${valVar}.length - ${olength - idx}" else idx) if typeof idx isnt 'object'
        val: new ValueNode(literal(valVar), [new accessClass(idx)])
      assigns.push(new AssignNode(obj, val).compile(o))
    code: assigns.join("\n")
    code
#

Compile the assignment from an array splice literal, using JavaScript's Array#splice method.

  compileSplice: (o) ->
    name:   @variable.compile merge o, {onlyFirst: true}
    l:      @variable.properties.length
    range:  @variable.properties[l - 1].range
    plus:   if range.exclusive then '' else ' + 1'
    from:   range.from.compile(o)
    to:     range.to.compile(o) + ' - ' + from + plus
    val:    @value.compile(o)
    "${name}.splice.apply($name, [$from, $to].concat($val))"
#

CodeNode

#

A function definition. This is the only node that creates a new Scope. When for the purposes of walking the contents of a function body, the CodeNode has no children -- they're within the inner scope.

exports.CodeNode: class CodeNode extends BaseNode

  class:     'CodeNode'
  children: ['params', 'body']

  constructor: (params, body, tag) ->
    @params:  params or []
    @body:    body or new Expressions()
    @bound:   tag is 'boundfunc'
#

Compilation creates a new scope unless explicitly asked to share with the outer scope. Handles splat parameters in the parameter list by peeking at the JavaScript arguments objects. If the function is bound with the => arrow, generates a wrapper that saves the current value of this through a closure.

  compileNode: (o) ->
    sharedScope:  del o, 'sharedScope'
    top:          del o, 'top'
    o.scope:      sharedScope or new Scope(o.scope, @body, this)
    o.top:        true
    o.indent:     @idt(if @bound then 2 else 1)
    del o, 'noWrap'
    del o, 'globals'
    i: 0
    splat: undefined
    params: []
    for param in @params
      if param instanceof SplatNode and not splat?
        splat: param
        splat.index: i
        splat.trailings: []
        splat.arglength: @params.length
        @body.unshift(splat)
      else if splat?
        splat.trailings.push(param)
      else
        params.push(param)
      i: + 1
    params: (param.compile(o) for param in params)
    @body.makeReturn()
    (o.scope.parameter(param)) for param in params
    code: if @body.expressions.length then "\n${ @body.compileWithDeclarations(o) }\n" else ''
    func: "function(${ params.join(', ') }) {$code${@idt(if @bound then 1 else 0)}}"
    func: "($func)" if top and not @bound
    return func unless @bound
    inner: "(function() {\n${@idt(2)}return __func.apply(__this, arguments);\n${@idt(1)}});"
    "(function(__this) {\n${@idt(1)}var __func = $func;\n${@idt(1)}return $inner\n$@tab})(this)"

  topSensitive: ->
    true
#

Short-circuit traverseChildren method to prevent it from crossing scope boundaries unless crossScope is true

  traverseChildren: (crossScope, func) -> super(crossScope, func) if crossScope

  toString: (idt) ->
    idt: or ''
    children: (child.toString(idt + TAB) for child in @collectChildren()).join('')
    "\n$idt$children"
#

SplatNode

#

A splat, either as a parameter to a function, an argument to a call, or as part of a destructuring assignment.

exports.SplatNode: class SplatNode extends BaseNode

  class:     'SplatNode'
  children: ['name']

  constructor: (name) ->
    name: literal(name) unless name.compile
    @name: name

  compileNode: (o) ->
    if @index? then @compileParam(o) else @name.compile(o)
#

Compiling a parameter splat means recovering the parameters that succeed the splat in the parameter list, by slicing the arguments object.

  compileParam: (o) ->
    name: @name.compile(o)
    o.scope.find name
    len: o.scope.freeVariable()
    o.scope.assign len, "arguments.length"
    variadic: o.scope.freeVariable()
    o.scope.assign variadic, "$len >= $@arglength"
    for trailing, idx in @trailings
      pos: @trailings.length - idx
      o.scope.assign(trailing.compile(o), "arguments[$variadic ? $len - $pos : ${@index + idx}]")
    "$name = ${utility('slice')}.call(arguments, $@index, $len - ${@trailings.length})"
#

A compiling a splat as a destructuring assignment means slicing arguments from the right-hand-side's corresponding array.

  compileValue: (o, name, index, trailings) ->
    trail: if trailings then ", ${name}.length - $trailings" else ''
    "${utility 'slice'}.call($name, $index$trail)"
#

Utility function that converts arbitrary number of elements, mixed with splats, to a proper array

  @compileMixedArray: (list, o) ->
    args: []
    i: 0
    for arg in list
      code: arg.compile o
      if not (arg instanceof SplatNode)
        prev: args[i - 1]
        if i is 1 and prev.substr(0, 1) is '[' and prev.substr(prev.length - 1, 1) is ']'
          args[i - 1]: "${prev.substr(0, prev.length - 1)}, $code]"
          continue
        else if i > 1 and prev.substr(0, 9) is '.concat([' and prev.substr(prev.length - 2, 2) is '])'
          args[i - 1]: "${prev.substr(0, prev.length - 2)}, $code])"
          continue
        else
          code: "[$code]"
      args.push(if i is 0 then code else ".concat($code)")
      i: + 1
    args.join('')
#

WhileNode

#

A while loop, the only sort of low-level loop exposed by CoffeeScript. From it, all other loops can be manufactured. Useful in cases where you need more flexibility or more speed than a comprehension can provide.

exports.WhileNode: class WhileNode extends BaseNode

  class:         'WhileNode'
  children:     ['condition', 'guard', 'body']
  isStatement: -> yes

  constructor: (condition, opts) ->
    if opts and opts.invert
      condition: new ParentheticalNode condition if condition instanceof OpNode
      condition: new OpNode('!', condition)
    @condition: condition
    @guard: opts and opts.guard

  addBody: (body) ->
    @body: body
    this

  makeReturn: ->
    @returns: true
    this

  topSensitive: ->
    true
#

The main difference from a JavaScript while is that the CoffeeScript while can be used as a part of a larger expression -- while loops may return an array containing the computed result of each iteration.

  compileNode: (o) ->
    top:        del(o, 'top') and not @returns
    o.indent:   @idt 1
    o.top:      true
    cond:       @condition.compile(o)
    set:        ''
    unless top
      rvar:     o.scope.freeVariable()
      set:      "$@tab$rvar = [];\n"
      @body:    PushNode.wrap(rvar, @body) if @body
    pre:        "$set${@tab}while ($cond)"
    @body:      Expressions.wrap([new IfNode(@guard, @body)]) if @guard
    if @returns
      post: '\n' + new ReturnNode(literal(rvar)).compile(merge(o, {indent: @idt()}))
    else
      post: ''
    "$pre {\n${ @body.compile(o) }\n$@tab}$post"
#

OpNode

#

Simple Arithmetic and logical operations. Performs some conversion from CoffeeScript operations into their JavaScript equivalents.

exports.OpNode: class OpNode extends BaseNode
#

The map of conversions from CoffeeScript to JavaScript symbols.

  CONVERSIONS: {
    '==': '==='
    '!=': '!=='
  }
#

The list of operators for which we perform Python-style comparison chaining.

  CHAINABLE:        ['<', '>', '>=', '<=', '===', '!==']
#

Our assignment operators that have no JavaScript equivalent.

  ASSIGNMENT:       ['||=', '&&=', '?=']
#

Operators must come before their operands with a space.

  PREFIX_OPERATORS: ['typeof', 'delete']

  class:     'OpNode'
  children: ['first', 'second']

  constructor: (operator, first, second, flip) ->
    @first: first
    @second: second
    @operator: @CONVERSIONS[operator] or operator
    @flip: !!flip

  isUnary: ->
    not @second

  isChainable: ->
    indexOf(@CHAINABLE, @operator) >= 0

  compileNode: (o) ->
    o.operation: true
    return @compileChain(o)      if @isChainable() and @first.unwrap() instanceof OpNode and @first.unwrap().isChainable()
    return @compileAssignment(o) if indexOf(@ASSIGNMENT, @operator) >= 0
    return @compileUnary(o)      if @isUnary()
    return @compileExistence(o)  if @operator is '?'
    [@first.compile(o), @operator, @second.compile(o)].join ' '
#

Mimic Python's chained comparisons when multiple comparison operators are used sequentially. For example:

bin/coffee -e "puts 50 < 65 > 10"
true
  compileChain: (o) ->
    shared: @first.unwrap().second
    [@first.second, shared]: shared.compileReference(o) if shared.containsType CallNode
    [first, second, shared]: [@first.compile(o), @second.compile(o), shared.compile(o)]
    "($first) && ($shared $@operator $second)"
#

When compiling a conditional assignment, take care to ensure that the operands are only evaluated once, even though we have to reference them more than once.

  compileAssignment: (o) ->
    [first, second]: [@first.compile(o), @second.compile(o)]
    o.scope.find(first) if first.match(IDENTIFIER)
    return "$first = ${ ExistenceNode.compileTest(o, @first) } ? $first : $second" if @operator is '?='
    "$first = $first ${ @operator.substr(0, 2) } $second"
#

If this is an existence operator, we delegate to ExistenceNode.compileTest to give us the safe references for the variables.

  compileExistence: (o) ->
    [first, second]: [@first.compile(o), @second.compile(o)]
    test: ExistenceNode.compileTest(o, @first)
    "$test ? $first : $second"
#

Compile a unary OpNode.

  compileUnary: (o) ->
    space: if indexOf(@PREFIX_OPERATORS, @operator) >= 0 then ' ' else ''
    parts: [@operator, space, @first.compile(o)]
    parts: parts.reverse() if @flip
    parts.join('')
#

InNode

exports.InNode: class InNode extends BaseNode

  class:    'InNode'
  children: ['object', 'array']

  constructor: (object, array) ->
    @object: object
    @array: array

  isArray: ->
    @array instanceof ValueNode and @array.isArray()

  compileNode: (o) ->
    [@obj1, @obj2]: @object.compileReference o, {precompile: yes}
    if @isArray() then @compileOrTest(o) else @compileLoopTest(o)

  compileOrTest: (o) ->
    tests: for item, i in @array.base.objects
      "${item.compile(o)} === ${if i then @obj2 else @obj1}"
    "(${tests.join(' || ')})"

  compileLoopTest: (o) ->
    [@arr1, @arr2]: @array.compileReference o, {precompile: yes}
    [i, l]: [o.scope.freeVariable(), o.scope.freeVariable()]
    prefix: if @obj1 isnt @obj2 then @obj1 + '; ' else ''
    "!!(function(){ ${prefix}for (var $i=0, $l=${@arr1}.length; $i<$l; $i++) if (${@arr2}[$i] === $@obj2) return true; })()"
#

TryNode

#

A classic try/catch/finally block.

exports.TryNode: class TryNode extends BaseNode

  class:        'TryNode'
  children:     ['attempt', 'recovery', 'ensure']
  isStatement:  -> yes

  constructor: (attempt, error, recovery, ensure) ->
    @attempt: attempt
    @recovery: recovery
    @ensure: ensure
    @error: error

  makeReturn: ->
    @attempt: @attempt.makeReturn() if @attempt
    @recovery: @recovery.makeReturn() if @recovery
    this
#

Compilation is more or less as you would expect -- the finally clause is optional, the catch is not.

  compileNode: (o) ->
    o.indent:     @idt 1
    o.top:        true
    attemptPart: @attempt.compile(o)
    errorPart:   if @error then " (${ @error.compile(o) }) " else ' '
    catchPart:   if @recovery then " catch$errorPart{\n${ @recovery.compile(o) }\n$@tab}" else ''
    finallyPart: (@ensure or '') and ' finally {\n' + @ensure.compile(merge(o)) + "\n$@tab}"
    "${@tab}try {\n$attemptPart\n$@tab}$catchPart$finallyPart"
#

ThrowNode

#

Simple node to throw an exception.

exports.ThrowNode: class ThrowNode extends BaseNode

  class:         'ThrowNode'
  children:     ['expression']
  isStatement: -> yes

  constructor: (expression) ->
    @expression: expression
#

A ThrowNode is already a return, of sorts...

  makeReturn: ->
    return this

  compileNode: (o) ->
    "${@tab}throw ${@expression.compile(o)};"
#

ExistenceNode

#

Checks a variable for existence -- not null and not undefined. This is similar to .nil? in Ruby, and avoids having to consult a JavaScript truth table.

exports.ExistenceNode: class ExistenceNode extends BaseNode

  class:     'ExistenceNode'
  children: ['expression']

  constructor: (expression) ->
    @expression: expression

  compileNode: (o) ->
    ExistenceNode.compileTest(o, @expression)
#

The meat of the ExistenceNode is in this static compileTest method because other nodes like to check the existence of their variables as well. Be careful not to double-evaluate anything.

  @compileTest: (o, variable) ->
    [first, second]: variable.compileReference o
    "(typeof ${first.compile(o)} !== \"undefined\" && ${second.compile(o)} !== null)"
#

ParentheticalNode

#

An extra set of parentheses, specified explicitly in the source. At one time we tried to clean up the results by detecting and removing redundant parentheses, but no longer -- you can put in as many as you please.

Parentheses are a good way to force any statement to become an expression.

exports.ParentheticalNode: class ParentheticalNode extends BaseNode

  class:     'ParentheticalNode'
  children: ['expression']

  constructor: (expression) ->
    @expression: expression

  isStatement: ->
    @expression.isStatement()

  makeReturn: ->
    @expression.makeReturn()

  compileNode: (o) ->
    code: @expression.compile(o)
    return code if @isStatement()
    l:    code.length
    code: code.substr(o, l-1) if code.substr(l-1, 1) is ';'
    if @expression instanceof AssignNode then code else "($code)"
#

ForNode

#

CoffeeScript's replacement for the for loop is our array and object comprehensions, that compile into for loops here. They also act as an expression, able to return the result of each filtered iteration.

Unlike Python array comprehensions, they can be multi-line, and you can pass the current index of the loop as a second parameter. Unlike Ruby blocks, you can map and filter in a single pass.

exports.ForNode: class ForNode extends BaseNode

  class:         'ForNode'
  children:     ['body', 'source', 'guard']
  isStatement: -> yes

  constructor: (body, source, name, index) ->
    @body:    body
    @name:    name
    @index:   index or null
    @source:  source.source
    @guard:   source.guard
    @step:    source.step
    @object:  !!source.object
    [@name, @index]: [@index, @name] if @object
    @pattern: @name instanceof ValueNode
    throw new Error('index cannot be a pattern matching expression') if @index instanceof ValueNode
    @returns: false

  topSensitive: ->
    true

  makeReturn: ->
    @returns: true
    this

  compileReturnValue: (val, o) ->
    return '\n' + new ReturnNode(literal(val)).compile(o) if @returns
    return '\n' + val if val
    ''
#

Welcome to the hairiest method in all of CoffeeScript. Handles the inner loop, filtering, stepping, and result saving for array, object, and range comprehensions. Some of the generated code can be shared in common, and some cannot.

  compileNode: (o) ->
    topLevel:       del(o, 'top') and not @returns
    range:          @source instanceof ValueNode and @source.base instanceof RangeNode and not @source.properties.length
    source:         if range then @source.base else @source
    codeInBody:     @body.contains (n) -> n instanceof CodeNode
    scope:          o.scope
    name:           @name and @name.compile o
    index:          @index and @index.compile o
    scope.find name  if name and not @pattern and not codeInBody
    scope.find index if index
    rvar:           scope.freeVariable() unless topLevel
    ivar:           if range then name else if codeInBody then scope.freeVariable() else index or scope.freeVariable()
    varPart:        ''
    body:           Expressions.wrap([@body])
    if range
      sourcePart:   source.compileVariables o
      forPart:      source.compile merge o, {index: ivar, step: @step}
    else
      svar:         scope.freeVariable()
      sourcePart:   "$svar = ${ @source.compile(o) };"
      if @pattern
        namePart:   new AssignNode(@name, literal("$svar[$ivar]")).compile(merge o, {indent: @idt(1), top: true}) + "\n"
      else
        namePart:   "$name = $svar[$ivar]" if name
      unless @object
        lvar:       scope.freeVariable()
        stepPart:   if @step then "$ivar += ${ @step.compile(o) }" else "$ivar++"
        forPart:    "$ivar = 0, $lvar = ${svar}.length; $ivar < $lvar; $stepPart"
    sourcePart:     (if rvar then "$rvar = []; " else '') + sourcePart
    sourcePart:     if sourcePart then "$@tab$sourcePart\n$@tab" else @tab
    returnResult:   @compileReturnValue(rvar, o)

    body:           PushNode.wrap(rvar, body) unless topLevel
    if @guard
      body:         Expressions.wrap([new IfNode(@guard, body)])
    if codeInBody
      body.unshift  literal "var $namePart" if namePart
      body.unshift  literal "var $index = $ivar" if index
      body:         ClosureNode.wrap(body, true)
    else
      varPart:      "${@idt(1)}$namePart;\n" if namePart
    if @object
      forPart:      "$ivar in $svar) { if (${utility('hasProp')}.call($svar, $ivar)"
    body:           body.compile(merge(o, {indent: @idt(1), top: true}))
    vars:           if range then name else "$name, $ivar"
    close:          if @object then '}}' else '}'
    "${sourcePart}for ($forPart) {\n$varPart$body\n$@tab$close$returnResult"
#

IfNode

#

If/else statements. Our switch/when will be compiled into this. Acts as an expression by pushing down requested returns to the last line of each clause.

Single-expression IfNodes are compiled into ternary operators if possible, because ternaries are already proper expressions, and don't need conversion.

exports.IfNode: class IfNode extends BaseNode

  class:     'IfNode'
  children: ['condition', 'switchSubject', 'body', 'elseBody', 'assigner']

  constructor: (condition, body, tags) ->
    @condition: condition
    @body:      body
    @elseBody: null
    @tags:      tags or {}
    @condition: new OpNode('!', new ParentheticalNode(@condition)) if @tags.invert
    @isChain:  false

  bodyNode: -> @body?.unwrap()
  elseBodyNode: -> @elseBody?.unwrap()

  forceStatement: ->
    @tags.statement: true
    this
#

Tag a chain of IfNodes with their object(s) to switch on for equality tests. rewriteSwitch will perform the actual change at compile time.

  switchesOver: (expression) ->
    @switchSubject: expression
    this
#

Rewrite a chain of IfNodes with their switch condition for equality. Ensure that the switch expression isn't evaluated more than once.

  rewriteSwitch: (o) ->
    @assigner: @switchSubject
    unless (@switchSubject.unwrap() instanceof LiteralNode)
      variable: literal(o.scope.freeVariable())
      @assigner: new AssignNode(variable, @switchSubject)
      @switchSubject: variable
    @condition: for cond, i in flatten [@condition]
      cond: new ParentheticalNode(cond) if cond instanceof OpNode
      new OpNode('==', (if i is 0 then @assigner else @switchSubject), cond)
    @elseBodyNode().switchesOver(@switchSubject) if @isChain
#

prevent this rewrite from happening again

    @switchSubject: undefined
    this
#

Rewrite a chain of IfNodes to add a default case as the final else.

  addElse: (elseBody, statement) ->
    if @isChain
      @elseBodyNode().addElse elseBody, statement
    else
      @isChain: elseBody instanceof IfNode
      @elseBody: @ensureExpressions elseBody
    this
#

The IfNode only compiles into a statement if either of its bodies needs to be a statement. Otherwise a ternary is safe.

  isStatement: ->
    @statement: or !!(@tags.statement or @bodyNode().isStatement() or (@elseBody and @elseBodyNode().isStatement()))

  compileCondition: (o) ->
    (cond.compile(o) for cond in flatten([@condition])).join(' || ')

  compileNode: (o) ->
    if @isStatement() then @compileStatement(o) else @compileTernary(o)

  makeReturn: ->
    @body:      and @ensureExpressions(@body.makeReturn())
    @elseBody:  and @ensureExpressions(@elseBody.makeReturn())
    this

  ensureExpressions: (node) ->
    if node instanceof Expressions then node else new Expressions [node]
#

Compile the IfNode as a regular if-else statement. Flattened chains force inner else bodies into statement form.

  compileStatement: (o) ->
    @rewriteSwitch(o) if @switchSubject
    child:        del o, 'chainChild'
    condO:       merge o
    o.indent:     @idt 1
    o.top:        true
    ifDent:      if child then '' else @idt()
    comDent:     if child then @idt() else ''
    body:         @body.compile(o)
    ifPart:      "${ifDent}if (${ @compileCondition(condO) }) {\n$body\n$@tab}"
    return ifPart unless @elseBody
    elsePart: if @isChain
      ' else ' + @elseBodyNode().compile(merge(o, {indent: @idt(), chainChild: true}))
    else
      " else {\n${ @elseBody.compile(o) }\n$@tab}"
    "$ifPart$elsePart"
#

Compile the IfNode as a ternary operator.

  compileTernary: (o) ->
    ifPart:    @condition.compile(o) + ' ? ' + @bodyNode().compile(o)
    elsePart:  if @elseBody then @elseBodyNode().compile(o) else 'null'
    "$ifPart : $elsePart"
#

Faux-Nodes

#

PushNode

#

Faux-nodes are never created by the grammar, but are used during code generation to generate other combinations of nodes. The PushNode creates the tree for array.push(value), which is helpful for recording the result arrays from comprehensions.

PushNode: exports.PushNode: {

  wrap: (array, expressions) ->
    expr: expressions.unwrap()
    return expressions if expr.isPureStatement() or expr.containsPureStatement()
    Expressions.wrap([new CallNode(
      new ValueNode(literal(array), [new AccessorNode(literal('push'))]), [expr]
    )])

}
#

ClosureNode

#

A faux-node used to wrap an expressions body in a closure.

ClosureNode: exports.ClosureNode: {
#

Wrap the expressions body, unless it contains a pure statement, in which case, no dice. If the body mentions this or arguments, then make sure that the closure wrapper preserves the original values.

  wrap: (expressions, statement) ->
    return expressions if expressions.containsPureStatement()
    func: new ParentheticalNode(new CodeNode([], Expressions.wrap([expressions])))
    args: []
    mentionsArgs: expressions.contains (n) -> (n instanceof LiteralNode) and (n.value is 'arguments')
    mentionsThis: expressions.contains (n) -> (n instanceof LiteralNode) and (n.value is 'this')
    if mentionsArgs or mentionsThis
      meth: literal(if mentionsArgs then 'apply' else 'call')
      args: [literal('this')]
      args.push literal 'arguments' if mentionsArgs
      func: new ValueNode func, [new AccessorNode(meth)]
    call: new CallNode(func, args)
    if statement then Expressions.wrap([call]) else call

}
#

Utility Functions

UTILITIES: {
#

Correctly set up a prototype chain for inheritance, including a reference to the superclass for super() calls. See: goog.inherits.

  __extends:  """
              function(child, parent) {
                  var ctor = function(){ };
                  ctor.prototype = parent.prototype;
                  child.__superClass__ = parent.prototype;
                  child.prototype = new ctor();
                  child.prototype.constructor = child;
                }
              """
#

Shortcuts to speed up the lookup time for native functions.

  __hasProp: 'Object.prototype.hasOwnProperty'
  __slice:   'Array.prototype.slice'

}
#

Constants

#

Tabs are two spaces for pretty printing.

TAB: '  '
#

Trim out all trailing whitespace, so that the generated code plays nice with Git.

TRAILING_WHITESPACE: /[ \t]+$/gm
#

Obvious redundant parentheses should be removed.

DOUBLE_PARENS: /\(\(([^\(\)\n]*)\)\)/g
#

Keep these identifier regexes in sync with the Lexer.

IDENTIFIER: /^[a-zA-Z\$_](\w|\$)*$/
NUMBER    : /^(((\b0(x|X)[0-9a-fA-F]+)|((\b[0-9]+(\.[0-9]+)?|\.[0-9]+)(e[+\-]?[0-9]+)?)))\b$/i
#

Is a literal value a string?

IS_STRING: /^['"]/
#

Utility Functions

#

Handy helper for a generating LiteralNode.

literal: (name) ->
  new LiteralNode(name)
#

Helper for ensuring that utility functions are assigned at the top level.

utility: (name) ->
  ref: "__$name"
  Scope.root.assign ref, UTILITIES[ref]
  ref