1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/ujit_compile.c

355 lines
9.9 KiB
C
Raw Normal View History

#include <assert.h>
#include "insns.inc"
#include "internal.h"
#include "vm_core.h"
#include "vm_callinfo.h"
#include "builtin.h"
#include "insns_info.inc"
#include "ujit_compile.h"
#include "ujit_asm.h"
#include "ujit_utils.h"
2020-09-14 13:31:34 -04:00
// TODO: give ujit_examples.h some more meaningful file name
// eg ujit_hook.h
2020-09-14 13:31:34 -04:00
#include "ujit_examples.h"
// Code generation context
typedef struct ctx_struct
{
// Current PC
VALUE* pc;
// Difference between the current stack pointer and actual stack top
int32_t stack_diff;
} ctx_t;
// Code generation function
typedef void (*codegen_fn)(codeblock_t* cb, ctx_t* ctx);
// Map from YARV opcodes to code generation functions
static st_table *gen_fns;
// Code block into which we write machine code
static codeblock_t block;
static codeblock_t* cb = NULL;
2020-09-14 13:31:34 -04:00
// Hash table of encoded instructions
extern st_table *rb_encoded_insn_data;
2020-09-14 13:31:34 -04:00
static void ujit_init();
// Ruby instruction entry
static void
ujit_instr_entry(codeblock_t* cb)
{
for (size_t i = 0; i < sizeof(ujit_pre_call_bytes); ++i)
cb_write_byte(cb, ujit_pre_call_bytes[i]);
}
// Ruby instruction exit
static void
ujit_instr_exit(codeblock_t* cb)
{
for (size_t i = 0; i < sizeof(ujit_post_call_bytes); ++i)
cb_write_byte(cb, ujit_post_call_bytes[i]);
}
// Keep track of mapping from instructions to generated code
// See comment for rb_encoded_insn_data in iseq.c
static void
addr2insn_bookkeeping(void *code_ptr, int insn)
{
const void * const *table = rb_vm_get_insns_address_table();
const void * const translated_address = table[insn];
st_data_t encoded_insn_data;
if (st_lookup(rb_encoded_insn_data, (st_data_t)translated_address, &encoded_insn_data)) {
// This is a roundabout way of doing an insert. Doing a plain insert can cause GC
// while inserting. While inserting, the table is in an inconsistent state and the
// GC can do a lookup in the table.
st_table *new_table = st_copy(rb_encoded_insn_data);
st_table *old_table = rb_encoded_insn_data;
st_insert(new_table, (st_data_t)code_ptr, encoded_insn_data);
rb_encoded_insn_data = new_table;
st_free_table(old_table);
}
else {
rb_bug("ujit: failed to find info for original instruction while dealing with addr2insn");
}
}
// Get the current instruction opcode from the context object
int ctx_get_opcode(ctx_t* ctx)
{
return (int)(*ctx->pc);
}
// Get an instruction argument from the context object
VALUE ctx_get_arg(ctx_t* ctx, size_t arg_idx)
{
assert (arg_idx + 1 < insn_len(ctx_get_opcode(ctx)));
return *(ctx->pc + arg_idx + 1);
}
/*
Make space on the stack for N values
Return a pointer to the new stack top
*/
x86opnd_t ctx_stack_push(ctx_t* ctx, size_t n)
{
ctx->stack_diff += n;
// SP points just above the topmost value
int32_t offset = (ctx->stack_diff - 1) * 8;
return mem_opnd(64, RSI, offset);
}
/*
Pop N values off the stack
Return a pointer to the stack top before the pop operation
*/
x86opnd_t ctx_stack_pop(ctx_t* ctx, size_t n)
{
// SP points just above the topmost value
int32_t offset = (ctx->stack_diff - 1) * 8;
x86opnd_t top = mem_opnd(64, RSI, offset);
ctx->stack_diff -= n;
return top;
}
/*
Generate a chunk of machine code for one individual bytecode instruction
Eventually, this will handle multiple instructions in a sequence
2020-09-16 12:37:59 -04:00
MicroJIT code gets a pointer to the cfp as the first argument in RDI
See rb_ujit_empty_func(rb_control_frame_t *cfp) in iseq.c
2020-09-16 12:37:59 -04:00
Throughout the generated code, we store the current stack pointer in RSI
2020-09-16 12:37:59 -04:00
System V ABI reference:
https://wiki.osdev.org/System_V_ABI#x86-64
*/
uint8_t *
ujit_compile_insn(rb_iseq_t *iseq, unsigned int insn_idx, unsigned int* next_ujit_idx)
{
2020-09-14 13:31:34 -04:00
// If not previously done, initialize ujit
if (!cb)
{
2020-09-14 13:31:34 -04:00
ujit_init();
}
// NOTE: if we are ever deployed in production, we
// should probably just log an error and return NULL here,
// so we can fail more gracefully
2020-09-14 16:59:39 -04:00
if (cb->write_pos + 1024 >= cb->mem_size)
{
rb_bug("out of executable memory");
}
// Align the current write positon to cache line boundaries
cb_align_pos(cb, 64);
// Get a pointer to the current write position in the code block
uint8_t *code_ptr = &cb->mem_block[cb->write_pos];
//printf("write pos: %ld\n", cb->write_pos);
// Get the first opcode in the sequence
int first_opcode = (int)iseq->body->iseq_encoded[insn_idx];
2020-09-14 16:59:39 -04:00
// Create codegen context
ctx_t ctx;
ctx.pc = NULL;
ctx.stack_diff = 0;
// For each instruction to compile
size_t num_instrs;
for (num_instrs = 0;; ++num_instrs)
{
// Set the current PC
ctx.pc = &iseq->body->iseq_encoded[insn_idx];
// Get the current opcode
int opcode = ctx_get_opcode(&ctx);
// Lookup the codegen function for this instruction
st_data_t st_gen_fn;
if (!rb_st_lookup(gen_fns, opcode, &st_gen_fn))
{
//print_int(cb, imm_opnd(num_instrs));
//print_str(cb, insn_name(opcode));
break;
}
// Write the pre call bytes before the first instruction
if (num_instrs == 0)
{
ujit_instr_entry(cb);
// Load the current SP from the CFP into RSI
mov(cb, RSI, mem_opnd(64, RDI, 8));
}
// Call the code generation function
codegen_fn gen_fn = (codegen_fn)st_gen_fn;
gen_fn(cb, &ctx);
// Move to the next instruction
insn_idx += insn_len(opcode);
}
// Let the caller know how many instructions ujit compiled
*next_ujit_idx = insn_idx;
// If no instructions were compiled
if (num_instrs == 0)
{
return NULL;
}
// Write the adjusted SP back into the CFP
if (ctx.stack_diff != 0)
{
// The stack pointer points one above the actual stack top
x86opnd_t stack_pointer = ctx_stack_push(&ctx, 1);
lea(cb, RSI, stack_pointer);
mov(cb, mem_opnd(64, RDI, 8), RSI);
}
// Directly return the next PC, which is a constant
mov(cb, RAX, const_ptr_opnd(ctx.pc));
// Write the post call bytes
ujit_instr_exit(cb);
/*
// Hack to patch a relative 32-bit jump to the instruction handler
int next_opcode = (int)*ctx.pc;
const void * const *table = rb_vm_get_insns_address_table();
VALUE encoded = (VALUE)table[next_opcode];
uint8_t* p_handler = (uint8_t*)encoded;
uint8_t* p_code = &cb->mem_block[cb->write_pos];
int64_t rel64 = ((int64_t)p_handler) - ((int64_t)p_code - 2 + 5);
//printf("p_handler: %lld\n", (int64_t)p_handler);
//printf("rel64: %lld\n", rel64);
uint8_t byte0 = cb->mem_block[cb->write_pos - 2];
uint8_t byte1 = cb->mem_block[cb->write_pos - 1];
//printf("cb_init: %lld\n", (int64_t)&cb_init);
//printf("%lld\n", rel64);
if (byte0 == 0xFF && byte1 == 0x20 && rel64 >= -2147483648 && rel64 <= 2147483647)
{
//printf("%02X %02X\n", (int)byte0, (int)byte1);
cb->write_pos -= 2;
jmp32(cb, (int32_t)rel64);
}
*/
addr2insn_bookkeeping(code_ptr, first_opcode);
return code_ptr;
}
void gen_dup(codeblock_t* cb, ctx_t* ctx)
{
x86opnd_t dup_val = ctx_stack_pop(ctx, 1);
x86opnd_t loc0 = ctx_stack_push(ctx, 1);
x86opnd_t loc1 = ctx_stack_push(ctx, 1);
mov(cb, RAX, dup_val);
mov(cb, loc0, RAX);
mov(cb, loc1, RAX);
}
void gen_nop(codeblock_t* cb, ctx_t* ctx)
{
// Do nothing
}
void gen_pop(codeblock_t* cb, ctx_t* ctx)
{
// Decrement SP
ctx_stack_pop(ctx, 1);
}
2020-09-14 16:59:39 -04:00
void gen_putnil(codeblock_t* cb, ctx_t* ctx)
{
// Write constant at SP
x86opnd_t stack_top = ctx_stack_push(ctx, 1);
mov(cb, stack_top, imm_opnd(Qnil));
}
2020-09-14 16:59:39 -04:00
void gen_putobject(codeblock_t* cb, ctx_t* ctx)
2020-09-16 15:30:23 -04:00
{
// Get the argument
VALUE object = ctx_get_arg(ctx, 0);
x86opnd_t ptr_imm = const_ptr_opnd((void*)object);
2020-09-16 15:30:23 -04:00
// Write constant at SP
x86opnd_t stack_top = ctx_stack_push(ctx, 1);
mov(cb, RAX, ptr_imm);
mov(cb, stack_top, RAX);
}
2020-09-16 15:30:23 -04:00
void gen_putobject_int2fix(codeblock_t* cb, ctx_t* ctx)
{
int opcode = ctx_get_opcode(ctx);
int cst_val = (opcode == BIN(putobject_INT2FIX_0_))? 0:1;
2020-09-16 15:30:23 -04:00
// Write constant at SP
x86opnd_t stack_top = ctx_stack_push(ctx, 1);
mov(cb, stack_top, imm_opnd(INT2FIX(cst_val)));
2020-09-16 15:30:23 -04:00
}
2020-09-15 15:12:31 -04:00
void gen_putself(codeblock_t* cb, ctx_t* ctx)
{
// Load self from CFP
mov(cb, RAX, mem_opnd(64, RDI, 24));
// Write it on the stack
x86opnd_t stack_top = ctx_stack_push(ctx, 1);
mov(cb, stack_top, RAX);
}
2020-09-15 15:12:31 -04:00
void gen_getlocal_wc0(codeblock_t* cb, ctx_t* ctx)
{
// Load block pointer from CFP
mov(cb, RDX, mem_opnd(64, RDI, 32));
2020-09-15 15:12:31 -04:00
// Compute the offset from BP to the local
int32_t local_idx = (int32_t)ctx_get_arg(ctx, 0);
const int32_t offs = -8 * local_idx;
2020-09-15 15:12:31 -04:00
// Load the local from the block
mov(cb, RCX, mem_opnd(64, RDX, offs));
2020-09-15 15:12:31 -04:00
// Write the local at SP
x86opnd_t stack_top = ctx_stack_push(ctx, 1);
mov(cb, stack_top, RCX);
}
2020-09-14 13:31:34 -04:00
static void ujit_init()
{
// 64MB ought to be enough for anybody
2020-09-14 13:31:34 -04:00
cb = &block;
cb_init(cb, 64 * 1024 * 1024);
// Initialize the codegen function table
gen_fns = rb_st_init_numtable();
// Map YARV opcodes to the corresponding codegen functions
st_insert(gen_fns, (st_data_t)BIN(dup), (st_data_t)&gen_dup);
st_insert(gen_fns, (st_data_t)BIN(nop), (st_data_t)&gen_nop);
st_insert(gen_fns, (st_data_t)BIN(pop), (st_data_t)&gen_pop);
2020-09-16 15:30:23 -04:00
st_insert(gen_fns, (st_data_t)BIN(putnil), (st_data_t)&gen_putnil);
st_insert(gen_fns, (st_data_t)BIN(putobject), (st_data_t)&gen_putobject);
st_insert(gen_fns, (st_data_t)BIN(putobject_INT2FIX_0_), (st_data_t)&gen_putobject_int2fix);
st_insert(gen_fns, (st_data_t)BIN(putobject_INT2FIX_1_), (st_data_t)&gen_putobject_int2fix);
st_insert(gen_fns, (st_data_t)BIN(putself), (st_data_t)&gen_putself);
st_insert(gen_fns, (st_data_t)BIN(getlocal_WC_0), (st_data_t)&gen_getlocal_wc0);
2020-09-14 13:31:34 -04:00
}